
Online Demand Scheduling
with Failovers

Konstantina Mellou Marco Molinaro Rudy Zhou*

Microsoft Research, Redmond Carnegie Mellon

* work performed as intern in Cloud Operations Research (CORE) group at Microsoft Research, Redmond

Robust Assignments

• What happens if a machine fails?

⋮

Robust Assignments

• What happens if a machine fails?

⋮

Robust Assignments

• What happens if a machine fails?

• How to reassign?

⋮

Idea: Change assignment process to make
reassignment in case of failure easier

New Model: Redundancy

• Inspired by real systems architectures

• Split each demand in half:

• Assign each half to distinct machines

• If a machine fails, reassign all half-demands there to the machine of
their other half, possibly with increased capacity

Chaojie Zhang, Alok Gautam Kumbhare, Ioannis Manousakis, Deli Zhang, Pulkit A. Misra, Rod Assis, Kyle Woolcock, Nithish Mahalingam, Brijesh Warrier, David
Gauthier, Lalu Kunnath, Steve Solomon, Osvaldo Morales, Marcus Fontoura, Ricardo Bianchini:
Flex: High-Availability Datacenters With Zero Reserved Power. ISCA 2021

New Model: Redundancy

• Inspired by real systems architectures

• Split each demand in half:

• Assign each half to distinct machines

• If a machine fails, reassign all half-demands there to the machine of
their other half, possibly with increased capacity (failover scenario)

Chaojie Zhang, Alok Gautam Kumbhare, Ioannis Manousakis, Deli Zhang, Pulkit A. Misra, Rod Assis, Kyle Woolcock, Nithish Mahalingam, Brijesh Warrier, David
Gauthier, Lalu Kunnath, Steve Solomon, Osvaldo Morales, Marcus Fontoura, Ricardo Bianchini:
Flex: High-Availability Datacenters With Zero Reserved Power. ISCA 2021

New Model: Redundancy

• Inspired by real systems architectures

• Split each demand in half:

• Assign each half to distinct machines

• If a machine fails, reassign all half-demands there to the machine of
their other half, possibly with increased capacity (failover scenario)

Chaojie Zhang, Alok Gautam Kumbhare, Ioannis Manousakis, Deli Zhang, Pulkit A. Misra, Rod Assis, Kyle Woolcock, Nithish Mahalingam, Brijesh Warrier, David
Gauthier, Lalu Kunnath, Steve Solomon, Osvaldo Morales, Marcus Fontoura, Ricardo Bianchini:
Flex: High-Availability Datacenters With Zero Reserved Power. ISCA 2021

Online Demand Scheduling with Failover

• 𝑚 machines

• 𝑛 demands arrive online with sizes:

• Must assign demand to edge (pair of machines) upon arrival such
that:
• Nominal constraint: Load incident to each machine is ≤ 1

• Failover constraint: In every failover scenario (single machine failure), the
load incident to each machine is ≤ 𝐵

Online Demand Scheduling with Failover

• 𝑚 machines

• 𝑛 demands arrive online with sizes:

• Must assign demand to edge (pair of machines) upon arrival such
that:
• Nominal constraint: Load incident to each machine is ≤ 1

• Failover constraint: In every failover scenario (single machine failure), the
load incident to each machine is ≤ 𝐵

Online Demand Scheduling with Failover

• 𝑚 machines

• 𝑛 demands arrive online with sizes:

• Must assign demand to edge (pair of machines) upon arrival such
that:
• Nominal constraint: Load incident to each machine is ≤ 1

• Failover constraint: In every failover scenario (single machine failure), the
load incident to each machine is ≤ 𝐵

Online Demand Scheduling with Failover

• 𝑚 machines

• 𝑛 demands arrive online with sizes:

• Must assign demand to edge (pair of machines) upon arrival such
that:
• Nominal constraint: Load incident to each machine is ≤ 1

• Failover constraint: In every failover scenario (single machine failure), the
load incident to each machine is ≤ 𝐵

Online Demand Scheduling with Failover

• 𝑚 machines

• 𝑛 demands arrive online with sizes:

• Must assign demand to edge (pair of machines) upon arrival such
that:
• Nominal constraint: Load incident to each machine is ≤ 1

• Failover constraint: In every failover scenario (single machine failure), the
load incident to each machine is ≤ 𝐵

Online Demand Scheduling with Failover

• 𝑚 machines

• 𝑛 demands arrive online with sizes:

• Must assign demand to edge (pair of machines) upon arrival such
that:
• Nominal constraint: Load incident to each machine is ≤ 1

• Failover constraint: In every failover scenario (single machine failure), the
load incident to each machine is ≤ 𝐵

≤ 1

Online Demand Scheduling with Failover

• 𝑚 machines

• 𝑛 demands arrive online with sizes:

• Must assign demand to edge (pair of machines) upon arrival such
that:
• Nominal constraint: Load incident to each machine is ≤ 1

• Failover constraint: In every failover scenario (single machine failure), the
load incident to each machine is ≤ 𝐵

≤ 𝐵

× 2

σ𝑣≠𝑢 𝐿𝑜𝑎𝑑𝑢𝑣 + max
𝑣≠𝑢

𝐿𝑜𝑎𝑑𝑢𝑣 ≤ 𝐵

for every machine 𝑢

Online Demand Scheduling with Failover

• 𝑚 machines

• 𝑛 demands arrive online with sizes:

• Must assign demand to edge (pair of machines) upon arrival such
that:
• Nominal constraint: Load incident to each machine is ≤ 1

• Failover constraint: In every failover scenario (single machine failure), the
load incident to each machine is ≤ 𝐵

≤ 𝐵

× 2
Goal: maximize utilization (total size of assigned
demands) until first demand that needs to be rejected

σ𝑣≠𝑢 𝐿𝑜𝑎𝑑𝑢𝑣 + max
𝑣≠𝑢

𝐿𝑜𝑎𝑑𝑢𝑣 ≤ 𝐵

for every machine 𝑢

Related Work

• Multiple Knapsack [Chandra Chekuri, Sanjeev Khanna. SIAM J. Comput. 2005]

• Coupled placement [Madhukar R. Korupolu, Adam Meyerson, Rajmohan Rajaraman, Brian Tagiku.
Math. Prog. 2015]

• Do not capture failover constraints (depends on how load is arranged
on a machine’s edges)

Our Results

• No deterministic algorithm is better than
1

2
 - competitive

Theorem (Worst Case): (
𝟏

𝟐
 − 𝑜(1)) - competitive deterministic algorithm

Theorem (Stochastic): If all demand sizes are drawn i.i.d. from an unknown
distribution, then (𝟏 − 𝑜(1)) – competitive algorithm w.h.p.

Compared to optimal offline policy that knows all demands
but also assigns demands in same order until rejecting

Worst Case: Idea

𝜖

σ𝑣≠𝑢 𝐿𝑜𝑎𝑑𝑢𝑣 + max
𝑣≠𝑢

𝐿𝑜𝑎𝑑𝑢𝑣 ≤ 𝐵

for every machine 𝑢

Worst Case: Idea

2 × 𝜖

σ𝑣≠𝑢 𝐿𝑜𝑎𝑑𝑢𝑣 + max
𝑣≠𝑢

𝐿𝑜𝑎𝑑𝑢𝑣 ≤ 𝐵

for every machine 𝑢

Worst Case: Idea

• Minimize impact of failover by spreading out demands

⋯

2 ×

σ𝑣≠𝑢 𝐿𝑜𝑎𝑑𝑢𝑣 + max
𝑣≠𝑢

𝐿𝑜𝑎𝑑𝑢𝑣 ≤ 𝐵

for every machine 𝑢

Worst Case: Idea

• Minimize impact of failover by spreading out demands

𝜖

𝜖

𝜖

σ𝑣≠𝑢 𝐿𝑜𝑎𝑑𝑢𝑣 + max
𝑣≠𝑢

𝐿𝑜𝑎𝑑𝑢𝑣 ≤ 𝐵

for every machine 𝑢

Worst Case: Idea

• Minimize impact of failover by spreading out demands

𝜖

𝜖

𝜖

𝑑𝑒𝑔𝑟𝑒𝑒 =
1

𝜖
 − 1 (assume 𝐵 = 1)

σ𝑣≠𝑢 𝐿𝑜𝑎𝑑𝑢𝑣 + max
𝑣≠𝑢

𝐿𝑜𝑎𝑑𝑢𝑣 ≤ 𝐵

for every machine 𝑢

𝐾1/𝜖

Worst Case: Idea

• Minimize impact of failover by spreading out demands

• Ideally, want to make clique of machines for same size demands

• … but need to make sure we don’t run out of machines

𝜖

𝜖

𝜖

𝑑𝑒𝑔𝑟𝑒𝑒 =
1

𝜖
 − 1 (assume 𝐵 = 1)

σ𝑣≠𝑢 𝐿𝑜𝑎𝑑𝑢𝑣 + max
𝑣≠𝑢

𝐿𝑜𝑎𝑑𝑢𝑣 ≤ 𝐵

for every machine 𝑢

𝐾1/𝜖

Worst Case: Idea

• Minimize impact of failover by spreading out demands

• Ideally, want to make clique of machines for same size demands

• … but need to make sure we don’t run out of machines

𝜖

𝜖

𝜖

𝑑𝑒𝑔𝑟𝑒𝑒 =
1

𝜖
 − 1 (assume 𝐵 = 1)

⋯

σ𝑣≠𝑢 𝐿𝑜𝑎𝑑𝑢𝑣 + max
𝑣≠𝑢

𝐿𝑜𝑎𝑑𝑢𝑣 ≤ 𝐵

for every machine 𝑢

Worst Case: Algorithm

• Assume 𝐵 = 1 ⇒ want to arrange demands of size
1

𝑘
 in a 𝐾𝑘

• Assume all demand sizes are
1

𝑘
 for integer 𝑘

Algorithm: If a demand of size
1

𝑘
 arrives, assign it to an open edge

in a reserved 𝐾𝑘; otherwise reserve a new 𝐾𝑘 and assign it there

Worst Case: Algorithm

• Assume 𝐵 = 1 ⇒ want to arrange demands of size
1

𝑘
 in a 𝐾𝑘

• Assume all demand sizes are
1

𝑘
 for integer 𝑘

Algorithm: If a demand of size
1

𝑘
 arrives, assign it to an open edge

in a reserved 𝐾𝑘; otherwise reserve a new 𝐾𝑘 and assign it there

Worst Case: Algorithm

• Assume 𝐵 = 1 ⇒ want to arrange demands of size
1

𝑘
 in a 𝐾𝑘

• Assume all demand sizes are
1

𝑘
 for integer 𝑘

Algorithm: If a demand of size
1

𝑘
 arrives, assign it to an open edge

in a reserved 𝐾𝑘; otherwise reserve a new 𝐾𝑘 and assign it there

Worst Case: Algorithm

• Assume 𝐵 = 1 ⇒ want to arrange demands of size
1

𝑘
 in a 𝐾𝑘

• Assume all demand sizes are
1

𝑘
 for integer 𝑘

Algorithm: If a demand of size
1

𝑘
 arrives, assign it to an open edge

in a reserved 𝐾𝑘; otherwise reserve a new 𝐾𝑘 and assign it there

Worst Case: Algorithm

• Assume 𝐵 = 1 ⇒ want to arrange demands of size
1

𝑘
 in a 𝐾𝑘

• Assume all demand sizes are
1

𝑘
 for integer 𝑘

Algorithm: If a demand of size
1

𝑘
 arrives, assign it to an open edge

in a reserved 𝐾𝑘; otherwise reserve a new 𝐾𝑘 and assign it there

⋯

Worst Case: Algorithm

• Assume 𝐵 = 1 ⇒ want to arrange demands of size
1

𝑘
 in a 𝐾𝑘

• Assume all demand sizes are
1

𝑘
 for integer 𝑘

Algorithm: If a demand of size
1

𝑘
 arrives, assign it to an open edge

in a reserved 𝐾𝑘; otherwise reserve a new 𝐾𝑘 and assign it there

⋯

Worst Case: Algorithm

• Assume 𝐵 = 1 ⇒ want to arrange demands of size
1

𝑘
 in a 𝐾𝑘

• Assume all demand sizes are
1

𝑘
 for integer 𝑘

Algorithm: If a demand of size
1

𝑘
 arrives, assign it to an open edge

in a reserved 𝐾𝑘; otherwise reserve a new 𝐾𝑘 and assign it there

⋯ ⋯
⋯

𝑚

Worst Case: Algorithm

• Assume 𝐵 = 1 ⇒ want to arrange demands of size
1

𝑘
 in a 𝐾𝑘

• Assume all demand sizes are
1

𝑘
 for integer 𝑘

Algorithm: If a demand of size
1

𝑘
 arrives, assign it to an open edge

in a reserved 𝐾𝑘; otherwise reserve a new 𝐾𝑘 and assign it there

⋯ ⋯
⋯

𝑚≤ 1 wasted clique per size

Idea: Handle very large 𝑘 separately so
𝑘 ≤ 𝑜 𝑚 ⇒ waste 𝑜(𝑚) machines

Our Results

• No deterministic algorithm is better than
1

2
 - competitive

Theorem (Worst Case): (
𝟏

𝟐
 − 𝑜(1)) - competitive deterministic algorithm

Theorem (Stochastic): If all demand sizes are drawn i.i.d. from an unknown
distribution, then (𝟏 − 𝑜(1)) – competitive algorithm w.h.p.

Compared to optimal offline policy that knows all demands
but also assigns demands in same order until rejecting

Stochastic Model: Idea

• Each demand size drawn i.i.d. from distribution 𝜇

Algorithm: Suppose we already assigned first 𝑛′ demands:
• Compute (near-) optimal assignment of realized demand sizes

into minimum number of machines
• Use this assignment to assign the subsequent 𝑛′ online arrivals

Realized first 𝑛′

Stochastic Model: Idea

• Each demand size drawn i.i.d. from distribution 𝜇

Algorithm: Suppose we already assigned first 𝑛′ demands:
• Compute (near-) optimal assignment of realized demand sizes

into minimum number of machines
• Use this assignment to assign the subsequent 𝑛′ online arrivals

Realized first 𝑛′ Template assignment
for next 𝑛′

Stochastic Model: Idea

• Each demand size drawn i.i.d. from distribution 𝜇

Algorithm: Suppose we already assigned first 𝑛′ demands:
• Compute (near-) optimal assignment of realized demand sizes

into minimum number of machines
• Use this assignment to assign the subsequent 𝑛′ online arrivals

Realized first 𝑛′ Template assignment
for next 𝑛′ Next 𝑛′ arrive online

Template Assignment
Theorem (Monotone Matching): Given sequences 𝑋1, … , 𝑋𝑛 and 𝑌1, … , 𝑌𝑛 (arriving online) drawn
i.i.d. from the same distribution, we can compute a matching from 𝑌’s to 𝑋’s such that w.h.p.:
• If 𝑌𝑖 is matched to 𝑋𝑗, then 𝑌𝑖 ≤ 𝑋𝑗

• At most 𝑜 𝑛 of the 𝑌’s are unmatched

How to use template:
• Compute monotone matching from 𝑛′ next online arrivals to the realized first 𝑛′
• If matched, then assign arrival to corresponding slot in template
• Else, assign arrival to its own separate edge

Wansoo T. Rhee, Michel Talagrand. SIAM J. Comput. 1993

Template Assignment
Theorem (Monotone Matching): Given sequences 𝑋1, … , 𝑋𝑛 and 𝑌1, … , 𝑌𝑛 (arriving online) drawn
i.i.d. from the same distribution, we can compute a matching from 𝑌’s to 𝑋’s such that w.h.p.:
• If 𝑌𝑖 is matched to 𝑋𝑗, then 𝑌𝑖 ≤ 𝑋𝑗

• At most 𝑜 𝑛 of the 𝑌’s are unmatched

How to use template:
• Compute monotone matching from 𝑛′ next online arrivals to the realized first 𝑛′
• If matched, then assign arrival to corresponding slot in template
• Else, assign arrival to its own separate edge

Wansoo T. Rhee, Michel Talagrand. SIAM J. Comput. 1993

Template Assignment
Theorem (Monotone Matching): Given sequences 𝑋1, … , 𝑋𝑛 and 𝑌1, … , 𝑌𝑛 (arriving online) drawn
i.i.d. from the same distribution, we can compute a matching from 𝑌’s to 𝑋’s such that w.h.p.:
• If 𝑌𝑖 is matched to 𝑋𝑗, then 𝑌𝑖 ≤ 𝑋𝑗

• At most 𝑜 𝑛 of the 𝑌’s are unmatched

How to use template:
• Compute monotone matching from 𝑛′ next online arrivals to the realized first 𝑛′
• If matched, then assign arrival to corresponding slot in template
• Else, assign arrival to its own separate edge

Wansoo T. Rhee, Michel Talagrand. SIAM J. Comput. 1993

Template Assignment
Theorem (Monotone Matching): Given sequences 𝑋1, … , 𝑋𝑛 and 𝑌1, … , 𝑌𝑛 (arriving online) drawn
i.i.d. from the same distribution, we can compute a matching from 𝑌’s to 𝑋’s such that w.h.p.:
• If 𝑌𝑖 is matched to 𝑋𝑗, then 𝑌𝑖 ≤ 𝑋𝑗

• At most 𝑜 𝑛 of the 𝑌’s are unmatched

How to use template:
• Compute monotone matching from 𝑛′ next online arrivals to the realized first 𝑛′
• If matched, then assign arrival to corresponding slot in template
• Else, assign arrival to its own separate edge

Wansoo T. Rhee, Michel Talagrand. SIAM J. Comput. 1993

Template Assignment
Theorem (Monotone Matching): Given sequences 𝑋1, … , 𝑋𝑛 and 𝑌1, … , 𝑌𝑛 (arriving online) drawn
i.i.d. from the same distribution, we can compute a matching from 𝑌’s to 𝑋’s such that w.h.p.:
• If 𝑌𝑖 is matched to 𝑋𝑗, then 𝑌𝑖 ≤ 𝑋𝑗

• At most 𝑜 𝑛 of the 𝑌’s are unmatched

How to use template:
• Compute monotone matching from 𝑛′ next online arrivals to the realized first 𝑛′
• If matched, then assign arrival to corresponding slot in template
• Else, assign arrival to its own separate edge

Wansoo T. Rhee, Michel Talagrand. SIAM J. Comput. 1993

Template Assignment
Theorem (Monotone Matching): Given sequences 𝑋1, … , 𝑋𝑛 and 𝑌1, … , 𝑌𝑛 (arriving online) drawn
i.i.d. from the same distribution, we can compute a matching from 𝑌’s to 𝑋’s such that w.h.p.:
• If 𝑌𝑖 is matched to 𝑋𝑗, then 𝑌𝑖 ≤ 𝑋𝑗

• At most 𝑜 𝑛 of the 𝑌’s are unmatched

How to use template:
• Compute monotone matching from 𝑛′ next online arrivals to the realized first 𝑛′
• If matched, then assign arrival to corresponding slot in template
• Else, assign arrival to its own separate edge

Wansoo T. Rhee, Michel Talagrand. SIAM J. Comput. 1993

Conclusion

• Introduce Online Demand Scheduling with Failover

• Worst Case

• Competitive ratio →
1

2
 as 𝑚 → ∞

• Tight lower bound

• Reserve cliques for different sizes

• Stochastic i.i.d.:
• Competitive ratio → 1 as 𝑚 → ∞

• Learn from past arrivals using template assignments

• Monotone matching theorem

	Slide 1: Online Demand Scheduling with Failovers
	Slide 2: Robust Assignments
	Slide 3: Robust Assignments
	Slide 4: Robust Assignments
	Slide 5: New Model: Redundancy
	Slide 6: New Model: Redundancy
	Slide 7: New Model: Redundancy
	Slide 8: Online Demand Scheduling with Failover
	Slide 9: Online Demand Scheduling with Failover
	Slide 10: Online Demand Scheduling with Failover
	Slide 11: Online Demand Scheduling with Failover
	Slide 12: Online Demand Scheduling with Failover
	Slide 13: Online Demand Scheduling with Failover
	Slide 14: Online Demand Scheduling with Failover
	Slide 15: Online Demand Scheduling with Failover
	Slide 16: Related Work
	Slide 17: Our Results
	Slide 18: Worst Case: Idea
	Slide 19: Worst Case: Idea
	Slide 20: Worst Case: Idea
	Slide 21: Worst Case: Idea
	Slide 22: Worst Case: Idea
	Slide 23: Worst Case: Idea
	Slide 24: Worst Case: Idea
	Slide 25: Worst Case: Algorithm
	Slide 26: Worst Case: Algorithm
	Slide 27: Worst Case: Algorithm
	Slide 28: Worst Case: Algorithm
	Slide 29: Worst Case: Algorithm
	Slide 30: Worst Case: Algorithm
	Slide 31: Worst Case: Algorithm
	Slide 32: Worst Case: Algorithm
	Slide 33: Our Results
	Slide 34: Stochastic Model: Idea
	Slide 35: Stochastic Model: Idea
	Slide 36: Stochastic Model: Idea
	Slide 37: Template Assignment
	Slide 38: Template Assignment
	Slide 39: Template Assignment
	Slide 40: Template Assignment
	Slide 41: Template Assignment
	Slide 42: Template Assignment
	Slide 43: Conclusion

