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Robust Assignments

• What happens if a machine fails?

• How to reassign? 

⋮

Idea: Change assignment process to make 
reassignment in case of failure easier



New Model: Redundancy

• Inspired by real systems architectures

• Split each demand in half:

• Assign each half to distinct machines

• If a machine fails, reassign all half-demands there to the machine of 
their other half, possibly with increased capacity
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Online Demand Scheduling with Failover

• 𝑚 machines

• 𝑛 demands arrive online with sizes:

• Must assign demand to edge (pair of machines) upon arrival such 
that:
• Nominal constraint: Load incident to each machine is ≤ 1

• Failover constraint: In every failover scenario (single machine failure), the 
load incident to each machine is ≤ 𝐵
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• 𝑛 demands arrive online with sizes:

• Must assign demand to edge (pair of machines) upon arrival such 
that:
• Nominal constraint: Load incident to each machine is ≤ 1

• Failover constraint: In every failover scenario (single machine failure), the 
load incident to each machine is ≤ 𝐵
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Goal: maximize utilization (total size of assigned 
demands) until first demand that needs to be rejected

σ𝑣≠𝑢 𝐿𝑜𝑎𝑑𝑢𝑣 + max
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Related Work

• Multiple Knapsack [Chandra Chekuri, Sanjeev Khanna. SIAM J. Comput. 2005]

• Coupled placement [Madhukar R. Korupolu, Adam Meyerson, Rajmohan Rajaraman, Brian Tagiku. 
Math. Prog. 2015]

• Do not capture failover constraints (depends on how load is arranged 
on a machine’s edges)



Our Results

• No deterministic algorithm is better than 
1

2
 - competitive

Theorem (Worst Case): (
𝟏

𝟐
 − 𝑜(1)) - competitive deterministic algorithm

Theorem (Stochastic): If all demand sizes are drawn i.i.d. from an unknown 
distribution, then (𝟏 − 𝑜(1)) – competitive algorithm w.h.p.

Compared to optimal offline policy that knows all demands 
but also assigns demands in same order until rejecting
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Worst Case: Algorithm

• Assume 𝐵 = 1 ⇒ want to arrange demands of size 
1

𝑘
 in a 𝐾𝑘

• Assume all demand sizes are 
1

𝑘
 for integer 𝑘

Algorithm: If a demand of size 
1

𝑘
 arrives, assign it to an open edge 

in a reserved 𝐾𝑘; otherwise reserve a new 𝐾𝑘 and assign it there

⋯ ⋯
⋯

𝑚≤ 1 wasted clique per size

Idea: Handle very large 𝑘 separately so 
𝑘 ≤ 𝑜 𝑚 ⇒ waste 𝑜(𝑚) machines 
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• Each demand size drawn i.i.d. from distribution 𝜇

Algorithm: Suppose we already assigned first 𝑛′ demands:
• Compute (near-) optimal assignment of realized demand sizes 

into minimum number of machines
• Use this assignment to assign the subsequent 𝑛′ online arrivals

Realized first 𝑛′ Template assignment 
for next 𝑛′ Next 𝑛′ arrive online



Template Assignment
Theorem (Monotone Matching): Given sequences 𝑋1, … , 𝑋𝑛 and 𝑌1, … , 𝑌𝑛 (arriving online) drawn 
i.i.d. from the same distribution, we can compute a matching from 𝑌’s to 𝑋’s such that w.h.p.:
• If 𝑌𝑖 is matched to 𝑋𝑗, then 𝑌𝑖 ≤ 𝑋𝑗

• At most 𝑜 𝑛  of the 𝑌’s are unmatched

How to use template:
• Compute monotone matching from 𝑛′ next online arrivals to the realized first 𝑛′
• If matched, then assign arrival to corresponding slot in template
• Else, assign arrival to its own separate edge 

Wansoo T. Rhee, Michel Talagrand. SIAM J. Comput. 1993



Template Assignment
Theorem (Monotone Matching): Given sequences 𝑋1, … , 𝑋𝑛 and 𝑌1, … , 𝑌𝑛 (arriving online) drawn 
i.i.d. from the same distribution, we can compute a matching from 𝑌’s to 𝑋’s such that w.h.p.:
• If 𝑌𝑖 is matched to 𝑋𝑗, then 𝑌𝑖 ≤ 𝑋𝑗

• At most 𝑜 𝑛  of the 𝑌’s are unmatched

How to use template:
• Compute monotone matching from 𝑛′ next online arrivals to the realized first 𝑛′
• If matched, then assign arrival to corresponding slot in template
• Else, assign arrival to its own separate edge 

Wansoo T. Rhee, Michel Talagrand. SIAM J. Comput. 1993



Template Assignment
Theorem (Monotone Matching): Given sequences 𝑋1, … , 𝑋𝑛 and 𝑌1, … , 𝑌𝑛 (arriving online) drawn 
i.i.d. from the same distribution, we can compute a matching from 𝑌’s to 𝑋’s such that w.h.p.:
• If 𝑌𝑖 is matched to 𝑋𝑗, then 𝑌𝑖 ≤ 𝑋𝑗

• At most 𝑜 𝑛  of the 𝑌’s are unmatched

How to use template:
• Compute monotone matching from 𝑛′ next online arrivals to the realized first 𝑛′
• If matched, then assign arrival to corresponding slot in template
• Else, assign arrival to its own separate edge 

Wansoo T. Rhee, Michel Talagrand. SIAM J. Comput. 1993



Template Assignment
Theorem (Monotone Matching): Given sequences 𝑋1, … , 𝑋𝑛 and 𝑌1, … , 𝑌𝑛 (arriving online) drawn 
i.i.d. from the same distribution, we can compute a matching from 𝑌’s to 𝑋’s such that w.h.p.:
• If 𝑌𝑖 is matched to 𝑋𝑗, then 𝑌𝑖 ≤ 𝑋𝑗

• At most 𝑜 𝑛  of the 𝑌’s are unmatched

How to use template:
• Compute monotone matching from 𝑛′ next online arrivals to the realized first 𝑛′
• If matched, then assign arrival to corresponding slot in template
• Else, assign arrival to its own separate edge 

Wansoo T. Rhee, Michel Talagrand. SIAM J. Comput. 1993



Template Assignment
Theorem (Monotone Matching): Given sequences 𝑋1, … , 𝑋𝑛 and 𝑌1, … , 𝑌𝑛 (arriving online) drawn 
i.i.d. from the same distribution, we can compute a matching from 𝑌’s to 𝑋’s such that w.h.p.:
• If 𝑌𝑖 is matched to 𝑋𝑗, then 𝑌𝑖 ≤ 𝑋𝑗

• At most 𝑜 𝑛  of the 𝑌’s are unmatched

How to use template:
• Compute monotone matching from 𝑛′ next online arrivals to the realized first 𝑛′
• If matched, then assign arrival to corresponding slot in template
• Else, assign arrival to its own separate edge 

Wansoo T. Rhee, Michel Talagrand. SIAM J. Comput. 1993



Template Assignment
Theorem (Monotone Matching): Given sequences 𝑋1, … , 𝑋𝑛 and 𝑌1, … , 𝑌𝑛 (arriving online) drawn 
i.i.d. from the same distribution, we can compute a matching from 𝑌’s to 𝑋’s such that w.h.p.:
• If 𝑌𝑖 is matched to 𝑋𝑗, then 𝑌𝑖 ≤ 𝑋𝑗

• At most 𝑜 𝑛  of the 𝑌’s are unmatched

How to use template:
• Compute monotone matching from 𝑛′ next online arrivals to the realized first 𝑛′
• If matched, then assign arrival to corresponding slot in template
• Else, assign arrival to its own separate edge 

Wansoo T. Rhee, Michel Talagrand. SIAM J. Comput. 1993



Conclusion

• Introduce Online Demand Scheduling with Failover

• Worst Case

• Competitive ratio →
1

2
 as 𝑚 → ∞

• Tight lower bound

• Reserve cliques for different sizes

• Stochastic i.i.d.:
• Competitive ratio → 1 as 𝑚 → ∞

• Learn from past arrivals using template assignments

• Monotone matching theorem
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