Online Demand Scheduling with Failovers

Konstantina Mellou Marco Molinaro
Microsoft Research, Redmond
Rudy Zhou*
Carnegie Mellon

Robust Assignments

- What happens if a machine fails?

Robust Assignments

- What happens if a machine fails?

Robust Assignments

- What happens if a machine fails?
- How to reassign?

New Model: Redundancy

- Inspired by real systems architectures
- Split each demand in half: \square
- Assign each half to distinct machines

New Model: Redundancy

- Inspired by real systems architectures
- Split each demand in half: \square
- Assign each half to distinct machines
- If a machine fails, reassign all half-demands there to the machine of their other half, possibly with increased capacity (failover scenario)

New Model: Redundancy

- Inspired by real systems architectures
- Split each demand in half: \square
- Assign each half to distinct machines
- If a machine fails, reassign all half-demands there to the machine of their other half, possibly with increased capacity (failover scenario)

Online Demand Scheduling with Failover

- m machines

Online Demand Scheduling with Failover

- m machines
- n demands arrive online with sizes: $\{\square$
- Must assign demand to edge (pair of machines) upon arrival such that:
- Nominal constraint: Load incident to each machine is ≤ 1
- Failover constraint: In every failover scenario (single machine failure), the load incident to each machine is $\leq B$

Online Demand Scheduling with Failover

- m machines
- n demands arrive online with sizes: $\{\square$
- Must assign demand to edge (pair of machines) upon arrival such that:
- Nominal constraint: Load incident to each machine is ≤ 1
- Failover constraint: In every failover scenario (single machine failure), the load incident to each machine is $\leq B$

Online Demand Scheduling with Failover

- m machines
- n demands arrive online with sizes: [$[\square$
- Must assign demand to edge (pair of machines) upon arrival such that:
- Nominal constraint: Load incident to each machine is ≤ 1
- Failover constraint: In every failover scenario (single machine failure), the load incident to each machine is $\leq B$

Online Demand Scheduling with Failover

- m machines
- n demands arrive online with sizes: $\{\square$
- Must assign demand to edge (pair of machines) upon arrival such that:
- Nominal constraint: Load incident to each machine is ≤ 1
- Failover constraint: In every failover scenario (single machine failure), the load incident to each machine is $\leq B$

Online Demand Scheduling with Failover

- m machines
- n demands arrive online with sizes: $\{\square$
- Must assign demand to edge (pair of machines) upon arrival such that:
- Nominal constraint: Load incident to each machine is ≤ 1
- Failover constraint: In every failover scenario (single machine failure), the load incident to each machine is $\leq B$

Online Demand Scheduling with Failover

- m machines
- n demands arrive online with sizes: $\{\lceil\square$
- Must assign demand to edge (pair of machines) upon arrival such that:
- Nominal constraint: Load incident to each machine is ≤ 1
- Failover constraint: In every failover scenario (single machine failure), the load incident to each machine is $\leq B$

$$
\sum_{v \neq u} \operatorname{Load}_{u v}+\max _{v \neq u} \operatorname{Load}_{u v} \leq B
$$ for every machine u

Online Demand Scheduling with Failover

- m machines
- n demands arrive online with sizes: [$[\square$
- Must assign demand to edge (pair of machines) upon arrival such that:
- Nominal constraint: Load incident to each machine is ≤ 1
- Failover constraint: In every failover scenario (single machine failure), the load incident to each machine is $\leq B$

$$
\sum_{v \neq u} \operatorname{Load}_{u v}+\max _{v \neq u} \operatorname{Load}_{u v} \leq B
$$ for every machine u

Goal: maximize utilization (total size of assigned demands) until first demand that needs to be rejected

Related Work

- Multiple Knapsack [Chandra Chekuri, Sanjeev Khanna. SIAM J. Comput. 2005]
- Coupled placement [Madhukar R. Korupolu, Adam Meyerson, Rajmohan Rajaraman, Brian Tagiku. Math. Prog. 2015]
- Do not capture failover constraints (depends on how load is arranged on a machine's edges)

Our Results

Compared to optimal offline policy that knows all demands but also assigns demands in same order until rejecting

Theorem (Worst Case): $\left(\frac{1}{2}-o(1)\right)$ - competitive deterministic algorithm
Theorem (Stochastic): If all demand sizes are drawn i.i.d. from an unknown distribution, then $(1-o(1))$ - competitive algorithm w.h.p.

- No deterministic algorithm is better than $\frac{1}{2}$ - competitive

$$
\sum_{v \neq u} \operatorname{Load}_{u v}+\max _{v \neq u} \operatorname{Load}_{u v} \leq B
$$

Worst Case: Idea

Worst Case: Idea

$$
\sum_{v \neq u} \operatorname{Load}_{u v}+\max _{v \neq u} \operatorname{Load}_{u v} \leq B
$$

Worst Case: Idea

$$
\sum_{v \neq u} \operatorname{Load}_{u v}+\max _{v \neq u} \operatorname{Load}_{u v} \leq B
$$

- Minimize impact of failover by spreading out demands

Worst Case: Idea

$$
\sum_{v \neq u} \operatorname{Load}_{u v}+\max _{v \neq u} \operatorname{Load}_{u v} \leq B
$$

- Minimize impact of failover by spreading out demands

Worst Case: Idea

$\sum_{v \neq u} \operatorname{Load}_{u v}+\max _{v \neq u} \operatorname{Load}_{u v} \leq B$ for every machine u
degree $=\frac{1}{\epsilon}-1 \quad($ assume $B=1)$

- Minimize impact of failover by spreading out demands

Worst Case: Idea

$$
\sum_{v \neq u} \operatorname{Load}_{u v}+\max _{v \neq u} \operatorname{Load}_{u v} \leq B
$$

degree $=\frac{1}{\epsilon}-1$ (assume $B=1$)

- Minimize impact of failover by spreading out demands
- Ideally, want to make clique of machines for same size demands

Worst Case: Idea

$$
\sum_{v \neq u} \operatorname{Load}_{u v}+\max _{v \neq u} \operatorname{Load}_{u v} \leq B
$$

degree $=\frac{1}{\epsilon}-1$ (assume $B=1$)

- Minimize impact of failover by spreading out demands
- Ideally, want to make clique of machines for same size demands
- ... but need to make sure we don't run out of machines

Worst Case: Algorithm

- Assume $B=1 \Rightarrow$ want to arrange demands of size $\frac{1}{k}$ in a K_{k}
- Assume all demand sizes are $\frac{1}{k}$ for integer k

Algorithm: If a demand of size $\frac{1}{k}$ arrives, assign it to an open edge in a reserved K_{k}; otherwise reserve a new K_{k} and assign it there

Worst Case: Algorithm

- Assume $B=1 \Rightarrow$ want to arrange demands of size $\frac{1}{k}$ in a K_{k}
- Assume all demand sizes are $\frac{1}{k}$ for integer k

Algorithm: If a demand of size $\frac{1}{k}$ arrives, assign it to an open edge in a reserved K_{k}; otherwise reserve a new K_{k} and assign it there

Worst Case: Algorithm

- Assume $B=1 \Rightarrow$ want to arrange demands of size $\frac{1}{k}$ in a K_{k}
- Assume all demand sizes are $\frac{1}{k}$ for integer k

Algorithm: If a demand of size $\frac{1}{k}$ arrives, assign it to an open edge in a reserved K_{k}; otherwise reserve a new K_{k} and assign it there
——

Worst Case: Algorithm

- Assume $B=1 \Rightarrow$ want to arrange demands of size $\frac{1}{k}$ in a K_{k}
- Assume all demand sizes are $\frac{1}{k}$ for integer k

Algorithm: If a demand of size $\frac{1}{k}$ arrives, assign it to an open edge in a reserved K_{k}; otherwise reserve a new K_{k} and assign it there
——

Worst Case: Algorithm

- Assume $B=1 \Rightarrow$ want to arrange demands of size $\frac{1}{k}$ in a K_{k}
- Assume all demand sizes are $\frac{1}{k}$ for integer k

Algorithm: If a demand of size $\frac{1}{k}$ arrives, assign it to an open edge in a reserved K_{k}; otherwise reserve a new K_{k} and assign it there

Worst Case: Algorithm

- Assume $B=1 \Rightarrow$ want to arrange demands of size $\frac{1}{k}$ in a K_{k}
- Assume all demand sizes are $\frac{1}{k}$ for integer k

Algorithm: If a demand of size $\frac{1}{k}$ arrives, assign it to an open edge in a reserved K_{k}; otherwise reserve a new K_{k} and assign it there

Worst Case: Algorithm

- Assume $B=1 \Rightarrow$ want to arrange demands of size $\frac{1}{k}$ in a K_{k}
- Assume all demand sizes are $\frac{1}{k}$ for integer k

Algorithm: If a demand of size $\frac{1}{k}$ arrives, assign it to an open edge in a reserved K_{k}; otherwise reserve a new K_{k} and assign it there

Worst Case: Algorithm

- Assume $B=1 \Rightarrow$ want to arrange demands of size $\frac{1}{k}$ in a K_{k}
- Assume all demand sizes are $\frac{1}{k}$ for integer k

Algorithm: If a demand of size $\frac{1}{k}$ arrives, assign it to an open edge in a reserved K_{k}; otherwise reserve a new K_{k} and assign it there

Idea: Handle very large k separately so $k \leq o(m) \Rightarrow$ waste $o(m)$ machines

Our Results

Compared to optimal offline policy that knows all demands but also assigns demands in same order until rejecting

Theorem (Worst Case): $\left(\frac{1}{2}-o(1)\right)$ - competitive deterministic algorithm
Theorem (Stochastic): If all demand sizes are drawn i.i.d. from an unknown distribution, then $(1-o(1))$ - competitive algorithm w.h.p.

- No deterministic algorithm is better than $\frac{1}{2}$ - competitive

Stochastic Model: Idea

- Each demand size drawn i.i.d. from distribution μ

Algorithm: Suppose we already assigned first n^{\prime} demands:

- Compute (near-) optimal assignment of realized demand sizes into minimum number of machines
- Use this assignment to assign the subsequent n^{\prime} online arrivals

Realized first n^{\prime}

Stochastic Model: Idea

- Each demand size drawn i.i.d. from distribution μ

Algorithm: Suppose we already assigned first n^{\prime} demands:

- Compute (near-) optimal assignment of realized demand sizes into minimum number of machines
- Use this assignment to assign the subsequent n^{\prime} online arrivals

Stochastic Model: Idea

- Each demand size drawn i.i.d. from distribution μ

Algorithm: Suppose we already assigned first n^{\prime} demands:

- Compute (near-) optimal assignment of realized demand sizes into minimum number of machines
- Use this assignment to assign the subsequent n^{\prime} online arrivals

Template Assignment

Theorem (Monotone Matching): Given sequences X_{1}, \ldots, X_{n} and Y_{1}, \ldots, Y_{n} (arriving online) drawn i.i.d. from the same distribution, we can compute a matching from Y^{\prime} 's to X^{\prime} 's such that w.h.p.:

- If Y_{i} is matched to X_{j}, then $Y_{i} \leq X_{j}$
- At most $o(n)$ of the $Y^{\prime} s$ are unmatched

How to use template:

- Compute monotone matching from n^{\prime} next online arrivals to the realized first n^{\prime}
- If matched, then assign arrival to corresponding slot in template
- Else, assign arrival to its own separate edge

. 111

Template Assignment

Theorem (Monotone Matching): Given sequences X_{1}, \ldots, X_{n} and Y_{1}, \ldots, Y_{n} (arriving online) drawn i.i.d. from the same distribution, we can compute a matching from Y^{\prime} 's to X^{\prime} 's such that w.h.p.:

- If Y_{i} is matched to X_{j}, then $Y_{i} \leq X_{j}$
- At most $o(n)$ of the $Y^{\prime} s$ are unmatched

How to use template:

- Compute monotone matching from n^{\prime} next online arrivals to the realized first n^{\prime}
- If matched, then assign arrival to corresponding slot in template
- Else, assign arrival to its own separate edge

Template Assignment

Theorem (Monotone Matching): Given sequences X_{1}, \ldots, X_{n} and Y_{1}, \ldots, Y_{n} (arriving online) drawn i.i.d. from the same distribution, we can compute a matching from Y^{\prime} 's to X^{\prime} 's such that w.h.p.:

- If Y_{i} is matched to X_{j}, then $Y_{i} \leq X_{j}$
- At most $o(n)$ of the $Y^{\prime} s$ are unmatched

How to use template:

- Compute monotone matching from n^{\prime} next online arrivals to the realized first n^{\prime}
- If matched, then assign arrival to corresponding slot in template
- Else, assign arrival to its own separate edge

Template Assignment

Theorem (Monotone Matching): Given sequences X_{1}, \ldots, X_{n} and Y_{1}, \ldots, Y_{n} (arriving online) drawn i.i.d. from the same distribution, we can compute a matching from Y^{\prime} 's to X^{\prime} 's such that w.h.p.:

- If Y_{i} is matched to X_{j}, then $Y_{i} \leq X_{j}$
- At most $o(n)$ of the $Y^{\prime} s$ are unmatched

How to use template:

- Compute monotone matching from n^{\prime} next online arrivals to the realized first n^{\prime}
- If matched, then assign arrival to corresponding slot in template
- Else, assign arrival to its own separate edge

.llı

Template Assignment

Theorem (Monotone Matching): Given sequences X_{1}, \ldots, X_{n} and Y_{1}, \ldots, Y_{n} (arriving online) drawn i.i.d. from the same distribution, we can compute a matching from Y^{\prime} 's to X^{\prime} 's such that w.h.p.:

- If Y_{i} is matched to X_{j}, then $Y_{i} \leq X_{j}$
- At most $o(n)$ of the $Y^{\prime} s$ are unmatched

How to use template:

- Compute monotone matching from n^{\prime} next online arrivals to the realized first n^{\prime}
- If matched, then assign arrival to corresponding slot in template
- Else, assign arrival to its own separate edge

.llı

Template Assignment

Theorem (Monotone Matching): Given sequences X_{1}, \ldots, X_{n} and Y_{1}, \ldots, Y_{n} (arriving online) drawn i.i.d. from the same distribution, we can compute a matching from Y^{\prime} 's to X^{\prime} 's such that w.h.p.:

- If Y_{i} is matched to X_{j}, then $Y_{i} \leq X_{j}$
- At most $o(n)$ of the $Y^{\prime} s$ are unmatched

How to use template:

- Compute monotone matching from n^{\prime} next online arrivals to the realized first n^{\prime}
- If matched, then assign arrival to corresponding slot in template
- Else, assign arrival to its own separate edge

Conclusion

- Introduce Online Demand Scheduling with Failover
- Worst Case
- Competitive ratio $\rightarrow \frac{1}{2}$ as $m \rightarrow \infty$
- Tight lower bound
- Reserve cliques for different sizes
- Stochastic i.i.d.:
- Competitive ratio $\rightarrow 1$ as $m \rightarrow \infty$
- Learn from past arrivals using template assignments
- Monotone matching theorem

