Robust Online Correlation Clustering

Rudy Zhou

Carnegie Mellon University

Silvio Lattanzi, Benjamin Moseley, Sergei Vassilvitskii, Yuyan Wang, Rudy Zhou *Robust Online Correlation Clustering* Neural Information Processing Systems (NeurIPS) 2021.

Brain Cells in a Dish Learn How to Play Pong - IGN IGN + 9 hours ago

Lab-grown brain cells play Pong computer game
Al Jazeera English · 17 hours ago

View Full Coverage

Signs of Water on Mars Might Actually Be an Indication of Something	Con.
Else	
SciTechDaily · 8 hours ago	

 First Martian life likely broke the planet with climate change, made themselves extinct
Livescience.com - 16 hours ago

View Full Coverage

Weather forces delay for NASA astronauts returning from space		
station on SpaceX capsule		
CNN - 10 hours ago 🔳		

 \sim

~

NASA DART Mission Successfully Smashes Asteroid Into New Path The New York Times - 2 days ago

 Op-Ed: Good news for a change — NASA proves there's a defense against killer asteroids

Los Angeles Times $\,\cdot\,$ 19 hours ago $\,\cdot\,$ Opinion

View Full Coverage

Space 'fingerprint' created by stars, NASA James Webb Telescope finds

2

- **し**

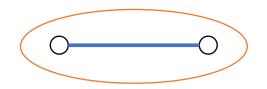
Brain Cells in a Dish Learn How to Play Pong - IGN IGN - 9 hours ago • Lab-grown brain cells play Pong computer game ■ Al Jazeera English - 17 hours ago ■ View Full Coverage	·	
Signs of Water on Mars Might Actually Be an Indication of Something Else SciTechDaily - 8 hours ago • First Martian life likely broke the planet with climate change, made themselves extinct Livescience com - 16 hours ago View Full Coverage	×	
Weather forces delay for NASA astronauts returning from space station on SpaceX capsule CNN - 10 hours ago @		
NASA DART Mission Successfully Smashes Asteroid Into New Path The New York Times · 2 days ago • Op-Ed: Good news for a change - NASA proves there's a defense against killer asteroids Los Angeles Times · 19 hours ago · Opinion C View Full Coverage		
Space 'fingerprint' created by stars, NASA James Webb Telescope		

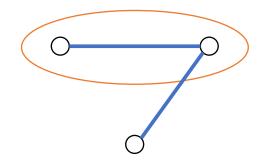
Brain Cells in a Dish Learn How to Play Pong - IGN IGN - 9 hours ago • Lab-grown brain cells play Pong computer game ■ Al Jazeera English - 17 hours ago @ View Full Coverage	×	
Signs of Water on Mars Might Actually Be an Indication of Something Else SciTechDaily - 8 hours ago • First Martian life likely broke the planet with climate change, made themselves extinct Livescience.com - 16 hours ago I View Full Coverage	v V	
Weather forces delay for NASA astronauts returning from space station on SpaceX capsule		
NASA DART Mission Successfully Smashes Asteroid Into New Path The New York Times · 2 days ago • Op-Ed: Good news for a change – NASA proves there's a defense against killer asteroids Los Angeles Times · 19 hours ago · Opinion Image: View Full Coverage		
Space 'fingerprint' created by stars, NASA James Webb Telescope		

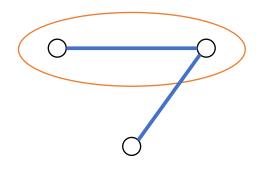
Brain Cells in a Dish Learn How to Play Pong - IGN IGN - 9 hours ago ■ Lab-grown brain cells play Pong computer game ■ Al Jazeera English - 17 hours ago ■ View Full Coverage	ý v			
Signs of Water on Mars Might Actually Be an Indication of Something Else SciTechDaily - 8 hours ago • First Martian life likely broke the planet with climate change, made themselves extinct Livescience.com - 16 hours ago View Full Coverage	×			
Weather forces delay for NASA astronauts returning from space station on SpaceX capsule CNN · 10 hours ago				/
NASA DART Mission Successfully Smashes Asteroid Into New Path The New York Times · 2 days ago • Op-Ed: Good news for a change – NASA proves there's a defense against killer asteroids Los Angeles Times · 19 hours ago · Opinion © View Full Coverage				
Space 'fingerprint' created by stars, NASA James Webb Telescope finde				

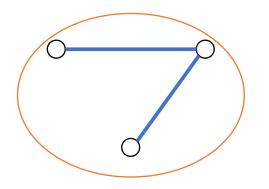
 \bigcirc

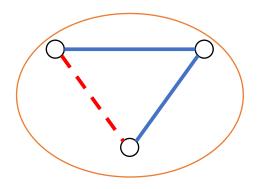
- Vertices arrive online; reveal edges to previous arrivals
- Assign vertex to existing cluster or make new singleton cluster

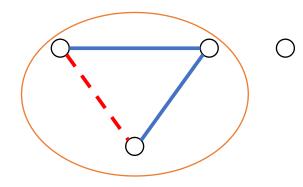

- Vertices arrive online; reveal edges to previous arrivals
- Assign vertex to existing cluster or make new singleton cluster

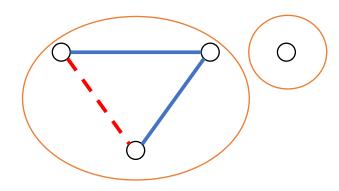

- Vertices arrive online; reveal edges to previous arrivals
- Assign vertex to existing cluster or make new singleton cluster

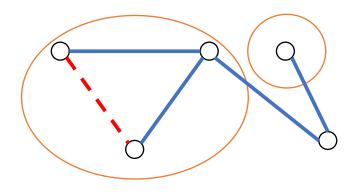

- Vertices arrive online; reveal edges to previous arrivals
- Assign vertex to existing cluster or make new singleton cluster

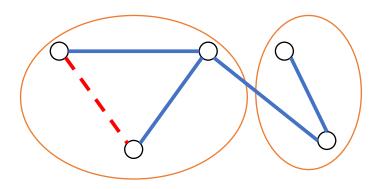

- Vertices arrive online; reveal edges to previous arrivals
- Assign vertex to existing cluster or make new singleton cluster

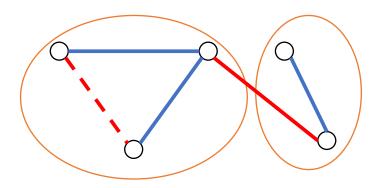

- Vertices arrive online; reveal edges to previous arrivals
- Assign vertex to existing cluster or make new singleton cluster

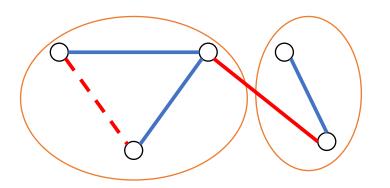

- Vertices arrive online; reveal edges to previous arrivals
- Assign vertex to existing cluster or make new singleton cluster


- Vertices arrive online; reveal edges to previous arrivals
- Assign vertex to existing cluster or make new singleton cluster

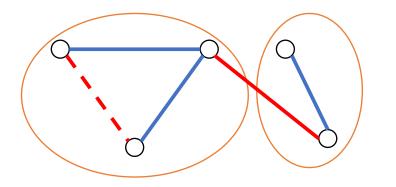

- Vertices arrive online; reveal edges to previous arrivals
- Assign vertex to existing cluster or make new singleton cluster


- Vertices arrive online; reveal edges to previous arrivals
- Assign vertex to existing cluster or make new singleton cluster

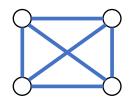

- Vertices arrive online; reveal edges to previous arrivals
- Assign vertex to existing cluster or make new singleton cluster


- Vertices arrive online; reveal edges to previous arrivals
- Assign vertex to existing cluster or make new singleton cluster

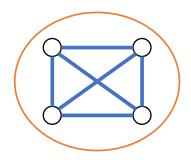
- Vertices arrive online; reveal edges to previous arrivals
- Assign vertex to existing cluster or make new singleton cluster


- Vertices arrive online; reveal edges to previous arrivals
- Assign vertex to existing cluster or make new singleton cluster

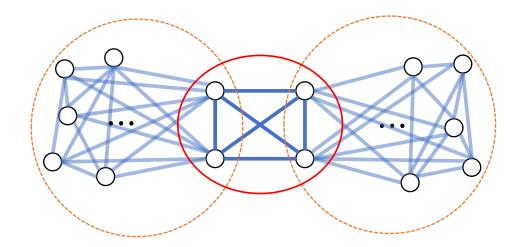
Minimize #(disagreements) = #(edges across) + #(non - edges within)...compared to optimal offline clustering that knows entire graph

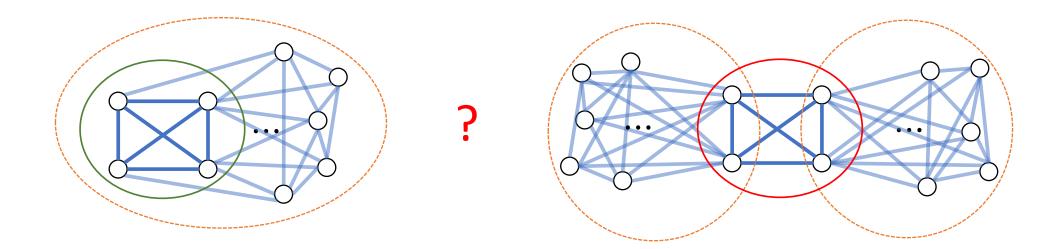

- Vertices arrive online; reveal edges to previous arrivals
- Assign vertex to existing cluster or make new singleton cluster

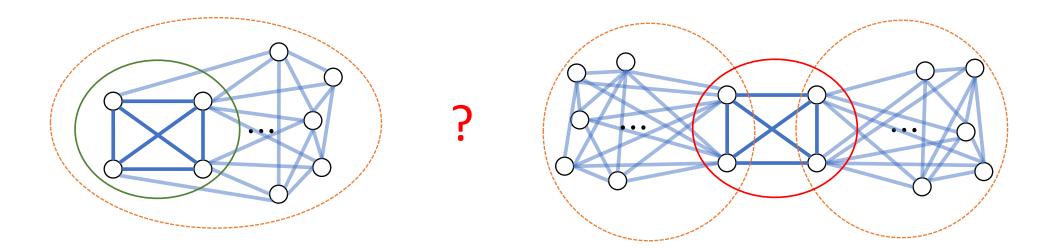
Competitive Ratio: An algorithm is *c*-competitive if for any input graph and arrival order: $#(disagreements \ by \ ALG) \le c \cdot #(disagreements \ by \ OPT)$



Minimize #(disagreements) = #(edges across) + #(non - edges within)...compared to optimal offline clustering that knows entire graph


• Every online algorithm is $\Omega(\# vertices)$ -competitive


• Every online algorithm is $\Omega(\# vertices)$ -competitive

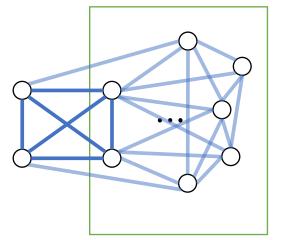

• Every online algorithm is $\Omega(\# vertices)$ -competitive

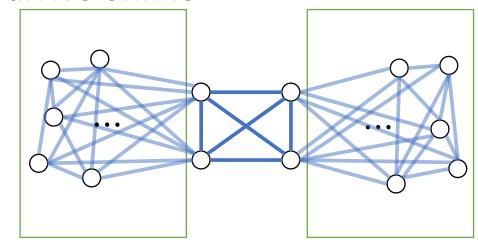
• Every online algorithm is $\Omega(\# vertices)$ -competitive

• Every online algorithm is $\Omega(\# vertices)$ -competitive

How to overcome online lower bound?

How to overcome online lower bound?


- Augment algorithm with historical data
- Introduce new online model
 - Historical data should be (partially) related to online arrivals
 - No other assumptions on online arrival order


Semi-Online Model

- Two phases: Offline and Online
- Offline Phase: corrupted random subgraph of ϵ -fraction of vertices revealed offline
 - Adversary chooses α -fraction of vertices
 - $(\epsilon \alpha)$ -fraction of remaining vertices are randomly chosen
- Online Phase: remaining vertices arrive online

Semi-Online Model

- Two phases: Offline and Online
- Offline Phase: corrupted random subgraph of ϵ -fraction of vertices revealed offline
 - Adversary chooses α -fraction of vertices
 - $(\epsilon \alpha)$ -fraction of remaining vertices are randomly chosen
- Online Phase: remaining vertices arrive online

Our Contribution

Introduce semi-online model for sequential decision-making problems

Main Theorem: We design an algorithm for semi-online correlation clustering that is $O(\frac{1}{\epsilon - \alpha})$ – competitive*.

* assuming
$$\alpha \leq \frac{\epsilon}{2}$$

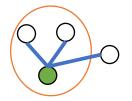
Our Contribution

Introduce semi-online model for sequential decision-making problems

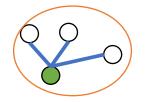
Main Theorem: We design an algorithm for semi-online correlation clustering that is $O(\frac{1}{\epsilon - \alpha})$ – competitive*.

- ... and any semi-online algorithm must be $\Omega(\frac{1}{\epsilon \alpha})$ competitive*
- ... and the theoretical results are predictive of practice

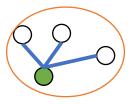
* assuming
$$\alpha \leq \frac{\epsilon}{2}$$


• Pivot Algorithm

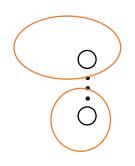
- Maintain collection of vertices called **Pivots**
- Consider vertices in some order
- If v has an edge to a previous Pivot, then v joins the first such Pivot's cluster


Pivot Algorithm

- Maintain collection of vertices called **Pivots**
- Consider vertices in some order
- If v has an edge to a previous Pivot, then v joins the first such Pivot's cluster

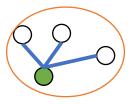

• Pivot Algorithm

- Maintain collection of vertices called **Pivots**
- Consider vertices in some order
- If v has an edge to a previous Pivot, then v joins the first such Pivot's cluster

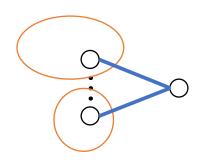


• Pivot Algorithm

- Maintain collection of vertices called **Pivots**
- Consider vertices in some order
- If v has an edge to a previous Pivot, then v joins the first such Pivot's cluster

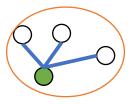


• Else make v a Pivot, and v starts its own cluster

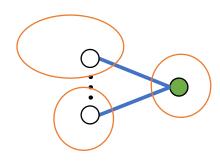


Pivot Algorithm

- Maintain collection of vertices called **Pivots**
- Consider vertices in some order
- If v has an edge to a previous Pivot, then v joins the first such Pivot's cluster

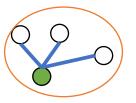


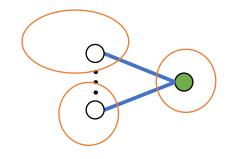
• Else make v a Pivot, and v starts its own cluster



• Pivot Algorithm

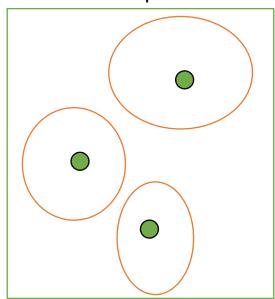
- Maintain collection of vertices called **Pivots**
- Consider vertices in some order
- If v has an edge to a previous Pivot, then v joins the first such Pivot's cluster


• Else make v a Pivot, and v starts its own cluster

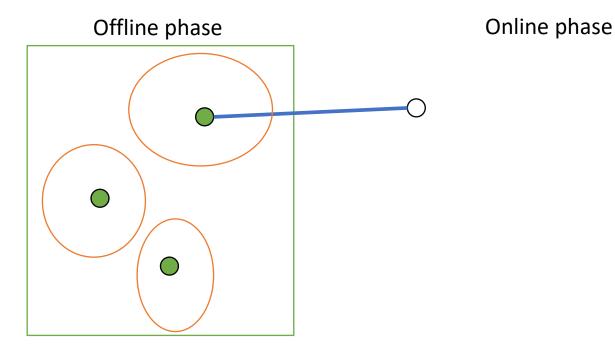

Algorithm

• Pivot Algorithm

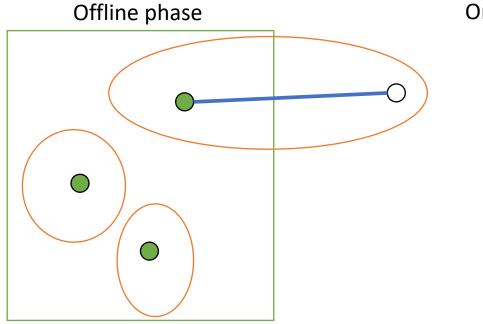
- Maintain collection of vertices called **Pivots**
- Consider vertices in some order
- If v has an edge to a previous Pivot, then v joins the first such Pivot's cluster



• Else make v a Pivot, and v starts its own cluster

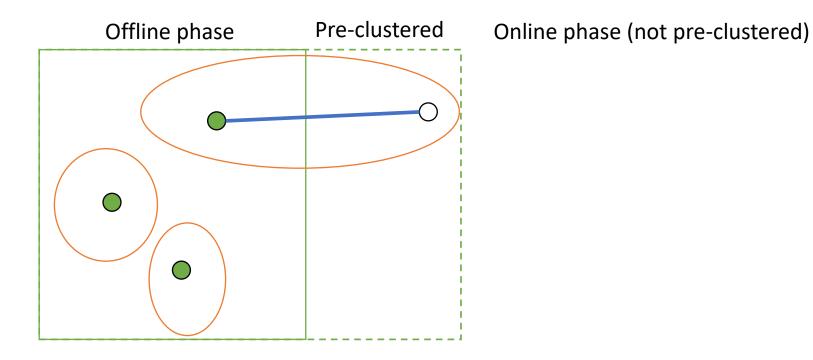

Our Algorithm: Run Pivot in random order in offline phase; then continue in arrival order in online phase

- Assume no corruption
- Use offline phase to pre-cluster online arrivals

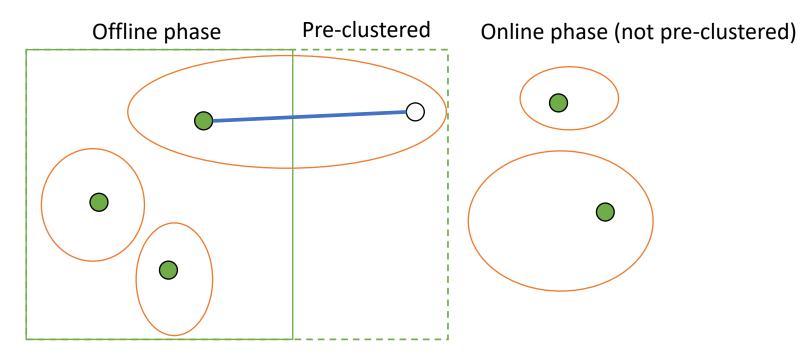


Offline phase

- Assume no corruption
- Use offline phase to pre-cluster online arrivals

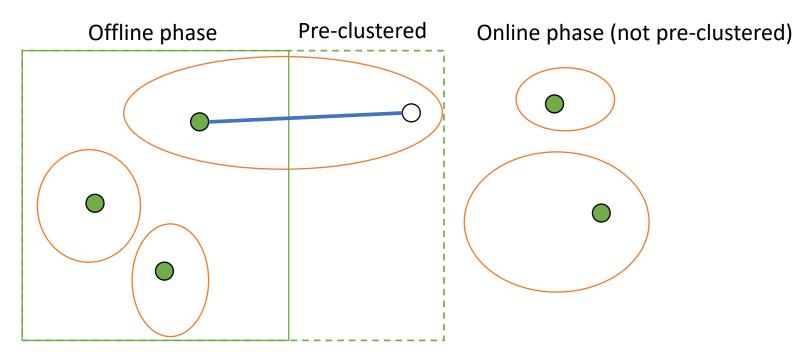


- Assume no corruption
- Use offline phase to pre-cluster online arrivals



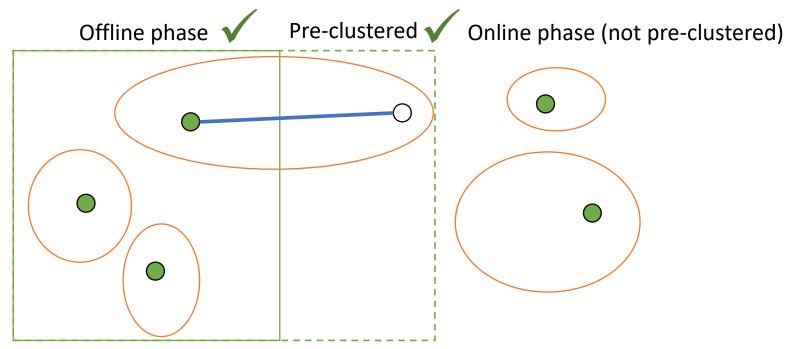
Online phase

- Assume no corruption
- Use offline phase to pre-cluster online arrivals


- Assume no corruption
- Use offline phase to pre-cluster online arrivals

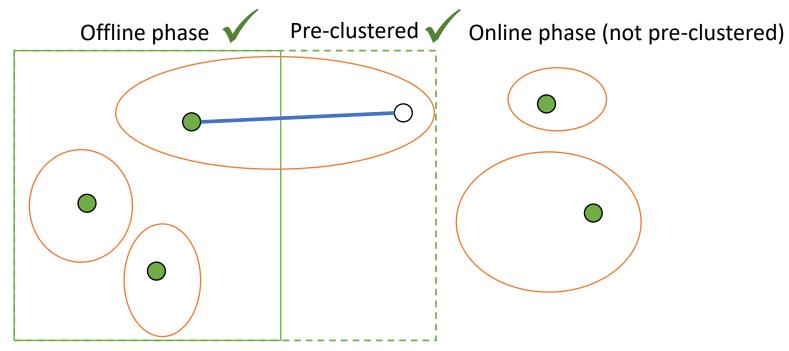
Pivot is O(1)-competitive in random order

Analysis Overview


- Assume no corruption
- Use offline phase to pre-cluster online arrivals

Pivot is O(1)-competitive in random order

Analysis Overview

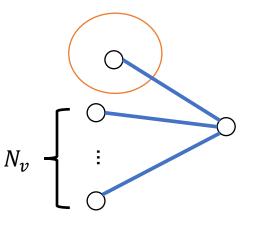

- Assume no corruption
- Use offline phase to pre-cluster online arrivals

Pivot is O(1)-competitive in random order

Not pre-clustered graph is sparse

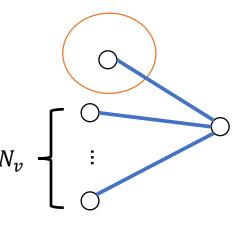
- Assume no corruption
- Use offline phase to pre-cluster online arrivals

Pivot is O(1)-competitive in random order


Not pre-clustered graph is sparse

- Assume no corruption
- Use offline phase to pre-cluster online arrivals

Lemma: For any vertex v, define the random variable N_v such that $N_v = #(not \ pre - clustered \ neighbors \ of \ v)$ if v is not pre-clustered, and $N_v = 0$ otherwise. Then $\mathbb{E} N_v = O(\frac{1}{\epsilon})$.



Lemma: For any vertex v, define the random variable N_v such that $N_v = #(not \ pre - clustered \ neighbors \ of \ v)$ if v is not pre-clustered, and $N_v = 0$ otherwise. Then $\mathbb{E} N_v = O(\frac{1}{\epsilon})$.

- Assume no corruption
- $N_v \ge k \Rightarrow$ For each arrival in offline phase, v still has k not preclustered neighbors, and none of them arrive next (A_i)

Our Algorithm: Run Pivot in random order in offline phase; then continue in arrival order in online phase

Lemma: For any vertex v, define the random variable N_v such that $N_v = #(not \ pre - clustered \ neighbors \ of \ v)$ if v is not pre-clustered, and $N_v = 0$ otherwise. Then $\mathbb{E} N_v = O(\frac{1}{\epsilon})$.

- Assume no corruption
- $N_v \ge k \Rightarrow$ For each arrival in offline phase, v still has k not preclustered neighbors, and none of them arrive next (A_i)

•
$$\mathbb{P}(A_i \mid A_{i-1}, \dots, A_1) \le \left(1 - \frac{k}{n}\right) \Rightarrow \mathbb{P}(N_v \ge k) \le \left(1 - \frac{k}{n}\right)^{\epsilon n} \le e^{-\epsilon k}$$

• Integrating over tail gives $\mathbb{E} N_{v} = O(\frac{1}{\epsilon})$.

Our Algorithm: Run Pivot in random order in offline phase; then continue in arrival order in online phase

Pivot is O(1)-competitive in random order

Not pre-clustered graph is sparse

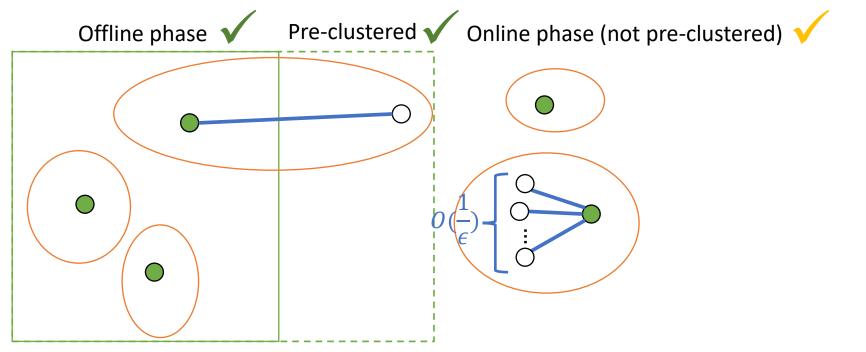
- Assume no corruption
- Use offline phase to pre-cluster online arrivals

• Assume no corruption

Pivot is O(1)-competitive in random order

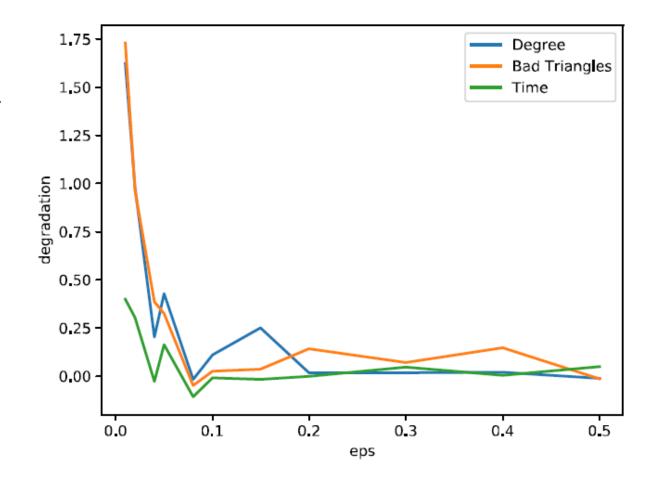
Not pre-clustered graph has expected degrees all $O(\frac{1}{\epsilon})$

• Use offline phase to pre-cluster online arrivals

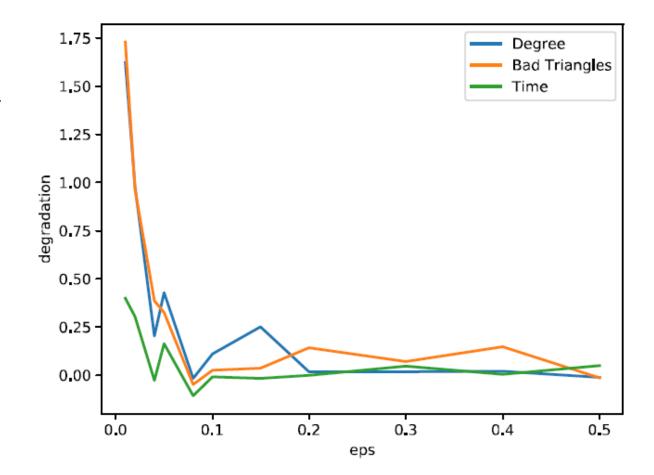


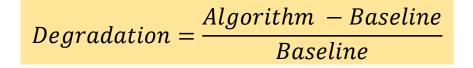
• Assume no corruption

Pivot is O(1)-competitive in random order


Not pre-clustered graph has expected degrees all $O(\frac{1}{\epsilon})$

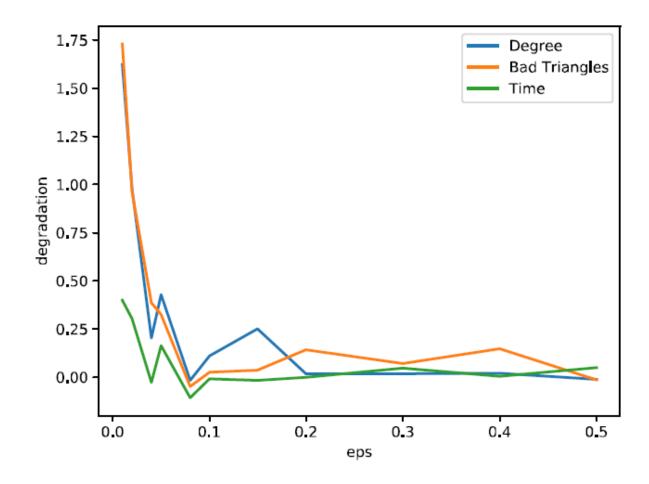
• Use offline phase to pre-cluster online arrivals


Experimental Results


• Algorithm is competitive with offline baseline for moderate ϵ

Experimental Results

• Algorithm is competitive with offline baseline for moderate ϵ



Bad triangle =

Experimental Results

- Algorithm is competitive with offline baseline for moderate ϵ
- ... and robust to adversarial corruptions
- ... and random sample can be practically obtained from past data

 $Degradation = \frac{Algorithm - Baseline}{Baseline}$ Bad triangle = 2

Summary

- Introduced semi-online model with adversarial corruptions ~ add data-driven decision making to online algorithms
- Designed novel semi-online algorithm for correlation clustering with tight competitive ratio ~ best possible way to use historical data
- $\Omega(\#vertices)$ lower bound online $\Rightarrow O(1)$ -competitive semi-online
- Theory predictive of practice