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Competitive Ratio: An algorithm is 𝒄-competitive if for any input graph and arrival order:
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How to overcome online lower bound?

• Augment algorithm with historical data

• Introduce new online model
• Historical data should be (partially) related to online arrivals

• No other assumptions on online arrival order
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Algorithm

• Pivot Algorithm
• Maintain collection of vertices called Pivots

• Consider vertices in some order

• If 𝑣 has an edge to a previous Pivot, then 𝑣 joins the first such Pivot’s cluster

• Else make 𝑣 a Pivot, and 𝑣 starts its own cluster

⋯

Our Algorithm: Run Pivot in random order in offline 
phase; then continue in arrival order in online phase
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• … and robust to adversarial 
corruptions

• … and random sample can be 
practically obtained from past 
data
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Summary

• Introduced semi-online model with adversarial corruptions ∼ add 
data-driven decision making to online algorithms

• Designed novel semi-online algorithm for correlation clustering with 
tight competitive ratio ∼ best possible way to use historical data

• Ω(#𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠) lower bound online ⇒ 𝑂(1)-competitive semi-online

• Theory predictive of practice
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