Stochastic Completion Time Minimization

Minimizing Total Completion Time

- m identical machines \square
- n jobs with known, independent job-size distributions $X_{j} \sim \bigwedge$

Minimizing Total Completion Time

- m identical machines \square
- n jobs with known, independent job-size distributions $X_{j} \sim \bigwedge$

Minimizing Total Completion Time

- m identical machines \square
- n jobs with known, independent job-size distributions $X_{j} \sim \bigwedge$

Minimizing Total Completion Time

- m identical machines \square
- n jobs with known, independent job-size distributions $X_{j} \sim \bigwedge$

Minimizing Total Completion Time

- m identical machines \square
- n jobs with known, independent job-size distributions $X_{j} \sim \bigwedge$

Minimizing Total Completion Time

- m identical machines \square
- n jobs with known, independent job-size distributions $X_{j} \sim \bigwedge$

Objective: minimize expected total completion time, $\sum_{j} \mathbb{E} C_{j}$
...compared to optimal adaptive policy that also only knows distributions

Past Work

- Shortest Processing Time is optimal for deterministic jobs [Bruno, Coffman $\sqrt[r n]{ }$ Sethi, Commun. ACM 1974]
- Stochastic jobs seem much harder
- $O(\Delta)$-approximation, where $\Delta=\max _{j} \frac{\mathbb{E}\left[X_{j}^{2}\right]}{\mathbb{E}\left[X_{j}\right]}$ is coefficient of variation via LP rounding [Möhring, Schulz, Uetz, J. ACM 1999]
- ...but all known LP's have integrality gap $\Omega(\Delta)$ [Skutella, Sviridenko, Uetz, Math. Oper. Res. 2016]
- All distribution-independent approximations are $\Omega(m)$ [Im, Moseley, Pruhs, STACS 2015]
- ...and there are strong lower bounds for "greedy-like" policies [Eberle, Fischer, Matuschke, Megow, Oper. Res. Lett. 2019]

Our Results

Main Theorem: There exists an efficient algorithm that is $\widetilde{O}(\sqrt{m})$ approximate for minimizing total completion time of stochastic jobs for Bernoulli jobs $\left(X_{j} \sim s_{j} \cdot \operatorname{Ber}\left(p_{j}\right)\right)$

- First approximation that does not depend on coefficient of variation and is sublinear in number of machines

Our Results

Main Theorem: There exists an efficient algorithm that is $\widetilde{O}(\sqrt{m})$ approximate for minimizing total completion time of stochastic jobs for Bernoulli jobs $\left(X_{j} \sim s_{j} \cdot \operatorname{Ber}\left(p_{j}\right)\right)$

- First approximation that does not depend on coefficient of variation and is sublinear in number of machines

Idea: Optimize proxy objective (weighted free time)

Weighted Free Time

- To minimize completion time, suffices to minimize starting time, $\sum_{j} \mathbb{E} S_{j}$ (shift of objective by $\sum_{j} \mathbb{E} X_{j}$)

Weighted Free Time

- To minimize completion time, suffices to minimize starting time, $\sum_{j} \mathbb{E} S_{j}$ (shift of objective by $\sum_{j} \mathbb{E} X_{j}$)

Free Time: Let F_{k} to be the earliest time a machine is free after starting $n-\frac{n}{2^{k}}$ jobs

Weighted Free Time

- To minimize completion time, suffices to minimize starting time, $\sum_{j} \mathbb{E} S_{j}$ (shift of objective by $\sum_{j} \mathbb{E} X_{j}$)

Free Time: Let F_{k} to be the earliest time a machine is free after starting $n-\frac{n}{2^{k}}$ jobs

- To minimize starting time, suffices to minimize weighted free time:

$$
\sum_{\boldsymbol{k}=\mathbb{1}}^{\log n} \frac{n}{2^{k}} \mathbb{E} \boldsymbol{F}_{\boldsymbol{k}}=\boldsymbol{\Theta}\left(\sum_{\boldsymbol{j}} \mathbb{E} \boldsymbol{S}_{\boldsymbol{j}}\right) \quad \text { Proof Sketch: } \Theta\left(\frac{\mathrm{n}}{2^{k}}\right) \text { jobs start in }\left[F_{k-1}, F_{k}\right]
$$

Minimizing Weighted Free Time

- Weighted free time: $\sum_{k=1}^{\log n} \frac{n}{2^{k}} \mathbb{E} F_{k}$

$$
F_{k} \text { is earliest time a machine is free }
$$ after starting $n-\frac{n}{2^{k}}$ jobs

Minimizing Weighted Free Time

- Weighted free time: $\sum_{k=1}^{\log n} \frac{n}{2^{k}} \mathbb{E} F_{k}$
F_{k} is earliest time a machine is free after starting $n-\frac{n}{2^{k}}$ jobs
- Subset Selection: Choose nested sets of jobs $J_{1} \subset J_{2} \subset \cdots J_{\log n}$ such that J_{1} comparable to $O p t$'s first $n-n / 2, J_{2}$ to first $n-n / 4, \ldots$

Minimizing Weighted Free Time

- Weighted free time: $\sum_{k=1}^{\log n} \frac{n}{2^{k}} \mathbb{E} F_{k}$
F_{k} is earliest time a machine is free after starting $n-\frac{n}{2^{k}}$ jobs
- Subset Selection: Choose nested sets of jobs $J_{1} \subset J_{2} \subset \cdots J_{\log n}$ such that J_{1} comparable to $O p t$'s first $n-n / 2, J_{2}$ to first $n-n / 4, \ldots$
- Batched Free Time Minimization: Schedule $J_{1} \subset J_{2} \subset \cdots J_{\log n}$ subject to the batch constraint (must schedule J_{k} before $J_{k+1} \backslash J_{k}$) such that the free time of J_{k} is comparable to F_{k}^{*}

Algorithm

- Consider Bernoulli jobs $X_{j} \sim s_{j} \cdot \operatorname{Ber}\left(p_{j}\right)$
- Subset Selection: To construct J_{k} : for each possible size parameter, exclude the $n / 2^{k}$ jobs with largest probability parameters*

Algorithm

- Consider Bernoulli jobs $X_{j} \sim s_{j} \cdot \operatorname{Ber}\left(p_{j}\right)$
- Subset Selection: To construct J_{k} : for each possible size parameter, exclude the $n / 2^{k}$ jobs with largest probability parameters*
- $\left|J_{k}\right|=n-\tilde{O}\left(\frac{n}{2^{k}}\right)$
- For all k, we have $J_{k} \subset J_{k}^{*}$ for all realizations of job sizes, where J_{k}^{*} is the first $n-\frac{n}{2^{k}}$ jobs of $\boldsymbol{O p t}$ Proof Idea: Exchange argument on optimal decision tree

[^0]
Algorithm

- Consider Bernoulli jobs $X_{j} \sim s_{j} \cdot \operatorname{Ber}\left(p_{j}\right)$
- Subset Selection: To construct J_{k} : for each possible size parameter, exclude the $n / 2^{k}$ jobs with largest probability parameters*
- $\left|J_{k}\right|=n-\tilde{O}\left(\frac{n}{2^{k}}\right)$
- For all k, we have $J_{k} \subset J_{k}^{*}$ for all realizations of job sizes, where J_{k}^{*} is the first $n-\frac{n}{2^{k}}$ jobs of $\boldsymbol{O p t}$ Proof Idea: Exchange argument on optimal decision tree
- Batched Free Time Minimization: Schedule each $J_{k} \backslash J_{k-1}$ in increasing order of size parameter

Algorithm

- Consider Bernoulli jobs $X_{j} \sim s_{j} \cdot \operatorname{Ber}\left(p_{j}\right)$
- Subset Selection: To construct J_{k} : for each possible size parameter, exclude the $n / 2^{k}$ jobs with largest probability parameters*
- $\left|J_{k}\right|=n-\tilde{O}\left(\frac{n}{2^{k}}\right)$
- For all \boldsymbol{k}, we have $J_{k} \subset J_{k}^{*}$ for all realizations of job sizes, where J_{k}^{*} is the first $\boldsymbol{n}-\frac{n}{2^{k}}$ jobs of $\boldsymbol{O} \boldsymbol{p t}$ Proof Idea: Exchange argument on optimal decision tree
- Batched Free Time Minimization: Schedule each $J_{k} \backslash J_{k-1}$ in increasing order of size parameter
- Within each $J_{k} \backslash J_{k-1}$ (other than the jobs with size zero), we schedule all jobs in increasing order of realized size

[^1]
Analysis Idea

Key Lemma: For all realizations of job sizes, we can write the weighted free time of $A l g$ as:

$$
\sum_{k=1}^{\log n} \frac{n}{2^{k}} F_{k} \approx O\left(\sum_{k=1}^{\log n} \frac{n}{2^{k}} \frac{\operatorname{Vol}\left(J_{k} \backslash J_{k-1}\left(\leq F_{k}^{*}\right)\right)}{m-\left|J_{k-1}\left(>F_{k}^{*}\right)\right|}\right)
$$

Analysis Idea

Key Lemma: For all realizations of job sizes, we can write the weighted free time of $A l g$ as:

Total size of all small (size $\leq F_{k}^{*}$) jobs in $J_{k} \backslash J_{k-1}$

$$
\sum_{k=1}^{\log n} \frac{n}{2^{k}} F_{k} \approx O\left(\sum_{k=1}^{\log n} \frac{n}{2^{k}} \frac{\operatorname{Vol}\left(J_{k} \backslash J_{k-1}\left(\leq F_{k}^{*}\right)\right)}{m-\left|J_{k-1}\left(>F_{k}^{*}\right)\right|}\right)
$$

Number of machines with no big (size $>F_{k}^{*}$) job before $J_{k} \backslash J_{k-1}$

Analysis Idea

Key Lemma: For all realizations of job sizes, we can write the weighted free time of $A l g$ as:

Total size of all small (size $\leq F_{k}^{*}$) jobs in $J_{k} \backslash J_{k-1}$

$$
\sum_{k=1}^{\log n} \frac{n}{2^{k}} F_{k} \approx O\left(\sum_{k=1}^{\log n} \frac{n}{2^{k}} \frac{\operatorname{Vol}\left(J_{k} \backslash J_{k-1}\left(\leq F_{k}^{*}\right)\right)}{m-\left|J_{k-1}\left(>F_{k}^{*}\right)\right|}\right)
$$

Number of machines with no big (size $>F_{k}^{*}$) job before $J_{k} \backslash J_{k-1}$

Analysis Idea

Key Lemma: For all realizations of job sizes, we can write the weighted free time of $A l g$ as:

Total size of all small (size $\leq F_{k}^{*}$) jobs in $J_{k} \backslash J_{k-1}$

$$
\sum_{k=1}^{\log n} \frac{n}{2^{k}} F_{k} \approx O\left(\sum_{k=1}^{\log n} \frac{n}{2^{k}} \frac{\operatorname{Vol}\left(J_{k} \backslash J_{k-1}\left(\leq F_{k}^{*}\right)\right)}{m-\left|J_{k-1}\left(>F_{k}^{*}\right)\right|}\right)
$$

Number of machines with no big (size $>F_{k}^{*}$) job before $J_{k} \backslash J_{k-1}$

Analysis Idea

Key Lemma: For all realizations of job sizes, we can write the weighted free time of $A l g$ as:

Total size of all small (size $\leq F_{k}^{*}$) jobs in $J_{k} \backslash J_{k-1}$

$$
\sum_{k=1}^{\log n} \frac{n}{2^{k}} F_{k} \approx O\left(\sum_{k=1}^{\log n} \frac{n}{2^{k}} \frac{\operatorname{Vol}\left(J_{k} \backslash J_{k-1}\left(\leq F_{k}^{*}\right)\right)}{m-\left|J_{k-1}\left(>F_{k}^{*}\right)\right|}\right)
$$

Number of machines with no big (size $>F_{k}^{*}$) job before $J_{k} \backslash J_{k-1}$

Analysis Idea

Key Lemma: For all realizations of job sizes, we can write the weighted free time of $A l g$ as:

Total size of all small (size $\leq F_{k}^{*}$) jobs in $J_{k} \backslash J_{k-1}$

$$
\sum_{k=1}^{\log n} \frac{n}{2^{k}} F_{k} \approx O\left(\sum_{k=1}^{\log n} \frac{n}{2^{k}} \frac{\operatorname{Vol}\left(J_{k} \backslash J_{k-1}\left(\leq F_{k}^{*}\right)\right)}{m-\left|J_{k-1}\left(>F_{k}^{*}\right)\right|}\right)
$$

Number of machines with no big (size $>F_{k}^{*}$) job before $J_{k} \backslash J_{k-1}$

Analysis Idea

- Problem: Opt may schedule same volume in much earlier batches than

Analysis Idea

- Problem: Opt may schedule same volume in much earlier batches than Alg

Lemma: In expectation, the number of machines with no big job decrease by at most a half between batches

$$
\sum_{k=1}^{\log n} \frac{n}{2^{k}} F_{k} \approx O\left(\sum_{k=1}^{\log n} \frac{n}{2^{k}} \frac{\operatorname{Vol}\left(J_{k} \backslash J_{k-1}\left(\leq F_{k}^{*}\right)\right)}{m-\left|J_{k-1}\left(>F_{k}^{*}\right)\right|}\right)
$$

Analysis Idea

- Problem: Opt may schedule same volume in much earlier batches than Alg

Lemma: In expectation, the number of machines with no big job decrease by at most a half between batches

$$
\sum_{k=1}^{\log n} \frac{n}{2^{k}} F_{k} \approx O\left(\sum_{k=1}^{\log n} \frac{n}{2^{k}} \frac{\operatorname{Vol}\left(J_{k} \backslash J_{k-1}\left(\leq F_{k}^{*}\right)\right)}{m-\left|J_{k-1}\left(>F_{k}^{*}\right)\right|}\right)
$$

- \Rightarrow with high probability, the number of machines with no big job decrease by at most a half $\pm \boldsymbol{O}(\sqrt{m})$ between batches
- Solution: If $O p t$ decides to do a job in an earlier batch, the increase in number of available machines is offset by the increase in weight up to a $\tilde{O}(\sqrt{m})$-factor

Summary

- $\tilde{O}(\sqrt{m})$-approximation for minimizing total completion time of stochastic jobs for Bernoulli jobs $\left(X_{j} \sim s_{j} \cdot \operatorname{Ber}\left(p_{j}\right)\right)$
- First approximation that is distribution-independent and $o(m)$ even for more restricted special cases
- Idea: Optimize proxy objective (weighted free time)

[^0]: * May assume there are $O(\log n)$-many distinct size parameters by standard discretization argument

[^1]: * May assume there are $O(\log n)$-many distinct size parameters by standard discretization argument

