
Stochastic Completion Time
Minimization

Anupam Gupta, Benjamin Moseley, Rudy Zhou
Minimizing Completion Times for Stochastic Jobs via Batched Free Times
Symposium on Discrete Algorithms (SODA) 2023

Minimizing Total Completion Time

• 𝑚 identical machines

• 𝑛 jobs with known, independent job-size distributions 𝑋𝑗 ∼

𝑋1 𝑋2 𝑋3

Minimizing Total Completion Time

• 𝑚 identical machines

• 𝑛 jobs with known, independent job-size distributions 𝑋𝑗 ∼

𝑋1

𝑋2

𝑡

𝑋1 𝑋2 𝑋3

Minimizing Total Completion Time

• 𝑚 identical machines

• 𝑛 jobs with known, independent job-size distributions 𝑋𝑗 ∼

𝑋2 ∣ 𝑋2 > 𝑡

𝑡

𝑋1 𝑋2 𝑋3

Minimizing Total Completion Time

• 𝑚 identical machines

• 𝑛 jobs with known, independent job-size distributions 𝑋𝑗 ∼

𝑋1 𝑋2 𝑋3

𝑋2 ∣ 𝑋2 > 𝑡

𝑡

𝑋3

Minimizing Total Completion Time

• 𝑚 identical machines

• 𝑛 jobs with known, independent job-size distributions 𝑋𝑗 ∼

𝑋1 𝑋2 𝑋3

𝑡

Minimizing Total Completion Time

• 𝑚 identical machines

• 𝑛 jobs with known, independent job-size distributions 𝑋𝑗 ∼

𝑋1 𝑋2 𝑋3

𝐶3𝐶1

𝐶2

Objective: minimize expected total
completion time, σ𝑗 𝔼 𝐶𝑗

…compared to optimal adaptive policy
that also only knows distributions

Past Work

• Shortest Processing Time is optimal for deterministic jobs [Bruno, Coffman Jr.,

Sethi, Commun. ACM 1974]

• Stochastic jobs seem much harder

• 𝑂 Δ -approximation, where Δ = 𝑚𝑎𝑥𝑗

𝔼[𝑋𝑗
2]

𝔼 𝑋𝑗
2 is coefficient of variation via LP

rounding [Möhring, Schulz, Uetz, J. ACM 1999]

• …but all known LP’s have integrality gap Ω(Δ) [Skutella, Sviridenko, Uetz, Math. Oper. Res.
2016]

• All distribution-independent approximations are Ω 𝑚 [Im, Moseley, Pruhs, STACS 2015]

• …and there are strong lower bounds for “greedy-like” policies [Eberle, Fischer,
Matuschke, Megow, Oper. Res. Lett. 2019]

Our Results

Main Theorem: There exists an efficient algorithm that is ෨𝑂(𝑚)-
approximate for minimizing total completion time of stochastic jobs for
Bernoulli jobs (𝑋𝑗 ∼ 𝑠𝑗 ⋅ 𝐵𝑒𝑟(𝑝𝑗))

• First approximation that does not depend on coefficient of variation
and is sublinear in number of machines

Our Results

Main Theorem: There exists an efficient algorithm that is ෨𝑂(𝑚)-
approximate for minimizing total completion time of stochastic jobs for
Bernoulli jobs (𝑋𝑗 ∼ 𝑠𝑗 ⋅ 𝐵𝑒𝑟(𝑝𝑗))

• First approximation that does not depend on coefficient of variation
and is sublinear in number of machines

Idea: Optimize proxy objective (weighted free time)

Weighted Free Time

• To minimize completion time, suffices to minimize starting time,
σ𝑗 𝔼 𝑆𝑗 (shift of objective by σ𝑗 𝔼 𝑋𝑗)

Weighted Free Time

• To minimize completion time, suffices to minimize starting time,
σ𝑗 𝔼 𝑆𝑗 (shift of objective by σ𝑗 𝔼 𝑋𝑗)

Free Time: Let 𝐹𝑘 to be the earliest time a machine is free

after starting 𝑛 −
𝑛

2𝑘 jobs

…

𝐹1

𝑛/2 𝑛/4

𝐹2

𝑛/8

𝐹3

Weighted Free Time

• To minimize completion time, suffices to minimize starting time,
σ𝑗 𝔼 𝑆𝑗 (shift of objective by σ𝑗 𝔼 𝑋𝑗)

• To minimize starting time, suffices to minimize weighted free time:

σ
𝒌=𝟏
𝐥𝐨𝐠 𝒏 𝒏

𝟐𝒌 𝔼 𝑭𝒌 = 𝚯(σ𝒋 𝔼 𝑺𝒋)

Free Time: Let 𝐹𝑘 to be the earliest time a machine is free

after starting 𝑛 −
𝑛

2𝑘 jobs

…

𝐹1

𝑛/2 𝑛/4

𝐹2

𝑛/8

𝐹3

Proof Sketch: Θ(
n

2𝑘) jobs start in [𝐹𝑘−1, 𝐹𝑘]

Minimizing Weighted Free Time

• Weighted free time: σ𝑘=1
log 𝑛 𝑛

2𝑘 𝔼 𝐹𝑘

𝐹𝑘 is earliest time a machine is free

after starting 𝑛 −
𝑛

2𝑘 jobs

…

𝐹1
∗

𝑛/2 𝑛/4

𝐹2
∗

𝑛/8

𝐹3
∗

𝑂𝑝𝑡

Minimizing Weighted Free Time

• Weighted free time: σ𝑘=1
log 𝑛 𝑛

2𝑘 𝔼 𝐹𝑘

• Subset Selection: Choose nested sets of jobs 𝐽1 ⊂ 𝐽2 ⊂ ⋯ 𝐽log 𝑛 such
that 𝐽1 comparable to 𝑂𝑝𝑡’s first 𝑛 − 𝑛/2, 𝐽2 to first 𝑛 − 𝑛/4, …

𝐹𝑘 is earliest time a machine is free

after starting 𝑛 −
𝑛

2𝑘 jobs

…

𝐹1
∗

𝑛/2 𝑛/4

𝐹2
∗

𝑛/8

𝐹3
∗

𝑂𝑝𝑡

…𝐴𝑙𝑔 𝐽1 𝐽2 ∖ 𝐽1 𝐽3 ∖ 𝐽2

Minimizing Weighted Free Time

• Weighted free time: σ𝑘=1
log 𝑛 𝑛

2𝑘 𝔼 𝐹𝑘

• Subset Selection: Choose nested sets of jobs 𝐽1 ⊂ 𝐽2 ⊂ ⋯ 𝐽log 𝑛 such
that 𝐽1 comparable to 𝑂𝑝𝑡’s first 𝑛 − 𝑛/2, 𝐽2 to first 𝑛 − 𝑛/4, …

• Batched Free Time Minimization: Schedule 𝐽1 ⊂ 𝐽2 ⊂ ⋯ 𝐽log 𝑛 subject
to the batch constraint (must schedule 𝐽𝑘 before 𝐽𝑘+1 ∖ 𝐽𝑘) such that
the free time of 𝐽𝑘 is comparable to 𝐹𝑘

∗

𝐹𝑘 is earliest time a machine is free

after starting 𝑛 −
𝑛

2𝑘 jobs

…

𝐹1
∗

𝑛/2 𝑛/4

𝐹2
∗

𝑛/8

𝐹3
∗

𝑂𝑝𝑡

…𝐴𝑙𝑔 𝐽1 𝐽2 ∖ 𝐽1 𝐽3 ∖ 𝐽2

𝐹1 𝐹2 𝐹3

Algorithm

• Consider Bernoulli jobs 𝑋𝑗 ∼ 𝑠𝑗 ⋅ 𝐵𝑒𝑟(𝑝𝑗)

• Subset Selection: To construct 𝐽𝑘: for each possible size parameter,
exclude the 𝑛/2𝑘 jobs with largest probability parameters*

Algorithm

• Consider Bernoulli jobs 𝑋𝑗 ∼ 𝑠𝑗 ⋅ 𝐵𝑒𝑟(𝑝𝑗)

• Subset Selection: To construct 𝐽𝑘: for each possible size parameter,
exclude the 𝑛/2𝑘 jobs with largest probability parameters*

• 𝐽𝑘 = 𝑛 − ෨𝑂(
𝑛

2𝑘)

• For all 𝒌, we have 𝑱𝒌 ⊂ 𝑱𝒌
∗ for all realizations of job sizes, where 𝑱𝒌

∗ is the
first 𝒏 −

𝒏

𝟐𝒌 jobs of 𝑶𝒑𝒕

* May assume there are 𝑂 log 𝑛 -many distinct size parameters by standard discretization argument

Proof Idea: Exchange argument on optimal decision tree

Algorithm

• Consider Bernoulli jobs 𝑋𝑗 ∼ 𝑠𝑗 ⋅ 𝐵𝑒𝑟(𝑝𝑗)

• Subset Selection: To construct 𝐽𝑘: for each possible size parameter,
exclude the 𝑛/2𝑘 jobs with largest probability parameters*

• 𝐽𝑘 = 𝑛 − ෨𝑂(
𝑛

2𝑘)

• For all 𝒌, we have 𝑱𝒌 ⊂ 𝑱𝒌
∗ for all realizations of job sizes, where 𝑱𝒌

∗ is the
first 𝒏 −

𝒏

𝟐𝒌 jobs of 𝑶𝒑𝒕

• Batched Free Time Minimization: Schedule each 𝐽𝑘 ∖ 𝐽𝑘−1 in
increasing order of size parameter

* May assume there are 𝑂 log 𝑛 -many distinct size parameters by standard discretization argument

Proof Idea: Exchange argument on optimal decision tree

Algorithm

• Consider Bernoulli jobs 𝑋𝑗 ∼ 𝑠𝑗 ⋅ 𝐵𝑒𝑟(𝑝𝑗)

• Subset Selection: To construct 𝐽𝑘: for each possible size parameter,
exclude the 𝑛/2𝑘 jobs with largest probability parameters*

• 𝐽𝑘 = 𝑛 − ෨𝑂(
𝑛

2𝑘)

• For all 𝒌, we have 𝑱𝒌 ⊂ 𝑱𝒌
∗ for all realizations of job sizes, where 𝑱𝒌

∗ is the
first 𝒏 −

𝒏

𝟐𝒌 jobs of 𝑶𝒑𝒕

• Batched Free Time Minimization: Schedule each 𝐽𝑘 ∖ 𝐽𝑘−1 in
increasing order of size parameter
• Within each 𝑱𝒌 ∖ 𝑱𝒌−𝟏 (other than the jobs with size zero), we schedule all

jobs in increasing order of realized size

* May assume there are 𝑂 log 𝑛 -many distinct size parameters by standard discretization argument

Proof Idea: Exchange argument on optimal decision tree

Analysis Idea

Key Lemma: For all realizations of job sizes, we can write the weighted
free time of 𝐴𝑙𝑔 as:

σ𝑘=1
log 𝑛 𝑛

2𝑘 𝐹𝑘 ≈ 𝑂(σ𝑘=1
log 𝑛 𝑛

2𝑘

𝑉𝑜𝑙(𝐽𝑘∖𝐽𝑘−1 ≤𝐹𝑘
∗)

𝑚 − 𝐽𝑘−1(>𝐹𝑘
∗)

)

Analysis Idea

Key Lemma: For all realizations of job sizes, we can write the weighted
free time of 𝐴𝑙𝑔 as:

σ𝑘=1
log 𝑛 𝑛

2𝑘 𝐹𝑘 ≈ 𝑂(σ𝑘=1
log 𝑛 𝑛

2𝑘

𝑉𝑜𝑙(𝐽𝑘∖𝐽𝑘−1 ≤𝐹𝑘
∗)

𝑚 − 𝐽𝑘−1(>𝐹𝑘
∗)

)

Total size of all small (size ≤ 𝐹𝑘
∗) jobs in 𝐽𝑘 ∖ 𝐽𝑘−1

Number of machines with no big (size > 𝐹𝑘
∗) job before 𝐽𝑘 ∖ 𝐽𝑘−1

Analysis Idea

Key Lemma: For all realizations of job sizes, we can write the weighted
free time of 𝐴𝑙𝑔 as:

σ𝑘=1
log 𝑛 𝑛

2𝑘 𝐹𝑘 ≈ 𝑂(σ𝑘=1
log 𝑛 𝑛

2𝑘

𝑉𝑜𝑙(𝐽𝑘∖𝐽𝑘−1 ≤𝐹𝑘
∗)

𝑚 − 𝐽𝑘−1(>𝐹𝑘
∗)

)

Total size of all small (size ≤ 𝐹𝑘
∗) jobs in 𝐽𝑘 ∖ 𝐽𝑘−1

Number of machines with no big (size > 𝐹𝑘
∗) job before 𝐽𝑘 ∖ 𝐽𝑘−1

𝐽𝑘−1

…

𝐹𝑘−1

Analysis Idea

Key Lemma: For all realizations of job sizes, we can write the weighted
free time of 𝐴𝑙𝑔 as:

σ𝑘=1
log 𝑛 𝑛

2𝑘 𝐹𝑘 ≈ 𝑂(σ𝑘=1
log 𝑛 𝑛

2𝑘

𝑉𝑜𝑙(𝐽𝑘∖𝐽𝑘−1 ≤𝐹𝑘
∗)

𝑚 − 𝐽𝑘−1(>𝐹𝑘
∗)

)

Total size of all small (size ≤ 𝐹𝑘
∗) jobs in 𝐽𝑘 ∖ 𝐽𝑘−1

Number of machines with no big (size > 𝐹𝑘
∗) job before 𝐽𝑘 ∖ 𝐽𝑘−1

𝐽𝑘−1

…

𝐹𝑘−1

𝑉𝑜𝑙(𝐽𝑘 ∖ 𝐽𝑘−1 ≤ 𝐹𝑘
∗)𝑚 − 𝐽𝑘−1(> 𝐹𝑘

∗)

Analysis Idea

Key Lemma: For all realizations of job sizes, we can write the weighted
free time of 𝐴𝑙𝑔 as:

σ𝑘=1
log 𝑛 𝑛

2𝑘 𝐹𝑘 ≈ 𝑂(σ𝑘=1
log 𝑛 𝑛

2𝑘

𝑉𝑜𝑙(𝐽𝑘∖𝐽𝑘−1 ≤𝐹𝑘
∗)

𝑚 − 𝐽𝑘−1(>𝐹𝑘
∗)

)

Total size of all small (size ≤ 𝐹𝑘
∗) jobs in 𝐽𝑘 ∖ 𝐽𝑘−1

Number of machines with no big (size > 𝐹𝑘
∗) job before 𝐽𝑘 ∖ 𝐽𝑘−1

𝐽𝑘−1

…

𝐹𝑘−1

𝑉𝑜𝑙(𝐽𝑘 ∖ 𝐽𝑘−1 ≤ 𝐹𝑘
∗)𝑚 − 𝐽𝑘−1(> 𝐹𝑘

∗)

Analysis Idea

Key Lemma: For all realizations of job sizes, we can write the weighted
free time of 𝐴𝑙𝑔 as:

σ𝑘=1
log 𝑛 𝑛

2𝑘 𝐹𝑘 ≈ 𝑂(σ𝑘=1
log 𝑛 𝑛

2𝑘

𝑉𝑜𝑙(𝐽𝑘∖𝐽𝑘−1 ≤𝐹𝑘
∗)

𝑚 − 𝐽𝑘−1(>𝐹𝑘
∗)

)

Total size of all small (size ≤ 𝐹𝑘
∗) jobs in 𝐽𝑘 ∖ 𝐽𝑘−1

Number of machines with no big (size > 𝐹𝑘
∗) job before 𝐽𝑘 ∖ 𝐽𝑘−1

𝐽𝑘−1

…

𝐹𝑘−1

𝑉𝑜𝑙(𝐽𝑘 ∖ 𝐽𝑘−1 ≤ 𝐹𝑘
∗)𝑚 − 𝐽𝑘−1(> 𝐹𝑘

∗)

𝐹𝑘

Analysis Idea

• Problem: 𝑂𝑝𝑡 may schedule same volume in much earlier batches than
𝐴𝑙𝑔

𝐽𝑘 ∖ 𝐽𝑘−1

…
𝐽1

𝐽𝑘−1 ∖ 𝐽𝑘−2

𝐴𝑙𝑔

𝑂𝑝𝑡 𝐽1
∗

…
𝐽𝑘−1

∗ ∖ 𝐽𝑘−2
∗

𝐽𝑘
∗ ∖ 𝐽𝑘−1

∗

Analysis Idea

• Problem: 𝑂𝑝𝑡 may schedule same volume in much earlier batches than
𝐴𝑙𝑔

• ⇒ with high probability, the number of machines with no big job decrease
by at most a half ± ෩𝑶(𝒎) between batches

• Solution: If 𝑂𝑝𝑡 decides to do a job in an earlier batch, the increase in
number of available machines is offset by the increase in weight up to a
෨𝑂(𝑚)-factor

Lemma: In expectation, the number of machines with no big job decrease
by at most a half between batches

σ𝑘=1
log 𝑛 𝑛

2𝑘 𝐹𝑘 ≈ 𝑂(σ𝑘=1
log 𝑛 𝑛

2𝑘

𝑉𝑜𝑙(𝐽𝑘∖𝐽𝑘−1 ≤𝐹𝑘
∗)

𝑚 − 𝐽𝑘−1(>𝐹𝑘
∗)

)

Analysis Idea

• Problem: 𝑂𝑝𝑡 may schedule same volume in much earlier batches than
𝐴𝑙𝑔

• ⇒ with high probability, the number of machines with no big job decrease
by at most a half ± ෩𝑶(𝒎) between batches

• Solution: If 𝑂𝑝𝑡 decides to do a job in an earlier batch, the increase in
number of available machines is offset by the increase in weight up to a
෨𝑂(𝑚)-factor

Lemma: In expectation, the number of machines with no big job decrease
by at most a half between batches

σ𝑘=1
log 𝑛 𝑛

2𝑘 𝐹𝑘 ≈ 𝑂(σ𝑘=1
log 𝑛 𝑛

2𝑘

𝑉𝑜𝑙(𝐽𝑘∖𝐽𝑘−1 ≤𝐹𝑘
∗)

𝑚 − 𝐽𝑘−1(>𝐹𝑘
∗)

)

Summary

• ෨𝑂(𝑚)-approximation for minimizing total completion time of
stochastic jobs for Bernoulli jobs (𝑋𝑗 ∼ 𝑠𝑗 ⋅ 𝐵𝑒𝑟(𝑝𝑗))

• First approximation that is distribution-independent and 𝑜(𝑚) even
for more restricted special cases

• Idea: Optimize proxy objective (weighted free time)

	Slide 1: Stochastic Completion Time Minimization
	Slide 2: Minimizing Total Completion Time
	Slide 3: Minimizing Total Completion Time
	Slide 4: Minimizing Total Completion Time
	Slide 5: Minimizing Total Completion Time
	Slide 6: Minimizing Total Completion Time
	Slide 7: Minimizing Total Completion Time
	Slide 8: Past Work
	Slide 9: Our Results
	Slide 10: Our Results
	Slide 11: Weighted Free Time
	Slide 12: Weighted Free Time
	Slide 13: Weighted Free Time
	Slide 14: Minimizing Weighted Free Time
	Slide 15: Minimizing Weighted Free Time
	Slide 16: Minimizing Weighted Free Time
	Slide 17: Algorithm
	Slide 18: Algorithm
	Slide 19: Algorithm
	Slide 20: Algorithm
	Slide 21: Analysis Idea
	Slide 22: Analysis Idea
	Slide 23: Analysis Idea
	Slide 24: Analysis Idea
	Slide 25: Analysis Idea
	Slide 26: Analysis Idea
	Slide 27: Analysis Idea
	Slide 28: Analysis Idea
	Slide 29: Analysis Idea
	Slide 30: Summary

