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Minimizing Total Completion Time

* m identical machines [
* n jobs with known, independent job-size distributions X; ~/\_
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- Objective: minimize expected total
= ‘ completion time, . EE ;

L] ...compared to optimal adaptive policy
C2 that also only knows distributions



Past Work

* Shortest Processing Time is optimal for deterministic jobs (sruno, coffman i,
Sethi, Commun. ACM 1974]

 Stochastic jobs seem much harder

E[X?
* 0(A)-approximation, where A = max; [E[[X’]]Z is coefficient of variation via LP
J

rounding (vishring, Schulz, Uetz, J. ACM 1999]

* ...but all known LP’s have integrality gap Q(A) (skutella, sviridenko, Uetz, Math. Oper. Res.
2016]

« All distribution-independent approximations are Q(m) [im, Moseley, Pruhs, STACS 2015]

 ...and there are strong lower bounds for “greedy-like” policies [cberle, Fischer,
Matuschke, Megow, Oper. Res. Lett. 2019]



Our Results

Main Theorem: There exists an efficient algorithm that is 0 (+/m)-

approximate for minimizing total completion time of stochastic jobs for
Bernoulli jobs (X; ~ s; - Ber(p;))

* First approximation that does not depend on coefficient of variation
and is sublinear in number of machines
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approximate for minimizing total completion time of stochastic jobs for
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* First approximation that does not depend on coefficient of variation
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Idea: Optimize proxy objective (weighted free time)
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* To minimize completion time, suffices to minimize starting time,
2.; E S; (shift of objective by 2. ; [E Xj)

Free Time: Let F;, to be the earliest time a machine is free
after startingn — Zikjobs

* To minimize starting time, suffices to minimize weighted free time:
1
kogl‘n an E Fk @(Z ES ) Proof Sketch: @( —) jobs startin [Fj_q, F]
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Minimizing Weighted Free Time

Fy is earliest time a machine is free
logn n

* Weighted free time: },, =, " E Fp,

after starting n — 2—72 jobs

Opt n/2 n/4 ‘ n/8 ‘
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Minimizing Weighted Free Time

Fy is earliest time a machine is free

i . logn n . _n.
° We|ghted free time: kzgl Z_k ]E Fk after starting n szObS

* Subset Selection: Choose nested sets of jobs J; C J, C -+ Jj5g 5, SUCh
that J; comparable to Opt’s firstn —n/2, J, to firstn —n/4, ...

* Batched Free Time Minimization: Schedule J; C J, C - [}, SUbject

to the batch constraint (must schedule J,, before J;, .1 \ Jx) such that
the free time of J;, is comparable to Fj,

Opt n/2 ‘ n/4 ‘ n/8 ‘

Alg J1 ‘ J2\J1 ‘ I3\ /2 ‘
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* Consider Bernoulli jobs X; ~ s; - Ber(p;)

* Subset Selection: To construct J.: for each possible size parameter,
exclude the n/Zk jobs with largest probability parameters*

* |kl =n — 0( %)
* Forall k, we have Jix < J; for all realizations of job sizes, where J is the
firstn — — jObS of Opt Proof Idea: Exchange argument on optimal decision tree

* Batched Free Time Minimization: Schedule each J;, \ Ji_1 in
increasing order of size parameter

* Within each J;, \ J;_1 (other than the jobs with size zero), we schedule all
jobs in increasing order of realized size

* May assume there are O (logn)-many distinct size parameters by standard discretization argument



Analysis ldea

Key Lemma: For all realizations of job sizes, we can write the weighted
free time of Alg as:

lognn . _ logn n Vol(Jx\Jk—1(sFg))
k=1 Z_RFk ~ 0(2]{:1 Zk m — |]k—1(>F]z)| )
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* Problem: Opt may schedule same volume in much earlier batches than
Alg
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Analysis ldea

. Zrloblem: Opt may schedule same volume in much earlier batches than
g

Lemma: In expectation, the number of machines with no big job decrease
by at most a half between batches

logn n _ logn n Vol(Jx\Jk-1(SFy))
k=1 Z_ka ~ O(Zk=1 ok )

= with high probability, the number of machines with no big job decrease
by at most a half + 0 (y/m) between batches

* Solution: If Opt decides to do a job in an earlier batch, the increase in
] is offset by the increase in weight up to a
O (\/m)-factor



summary

* 0(+/m)-approximation for minimizing total completion time of
stochastic jobs for Bernoulli jobs (X; ~ s; - Ber(p;))

* First approximation that is distribution-independent and o(m) even
for more restricted special cases

* ldea: Optimize proxy objective (weighted free time)
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