

Stochastic Completion Time Minimization

Anupam Gupta, Benjamin Moseley, Rudy Zhou *Minimizing Completion Times for Stochastic Jobs via Batched Free Times* Symposium on Discrete Algorithms (SODA) 2023

- m identical machines \Box
- *n* jobs with known, independent job-size distributions $X_i \sim \bigwedge$

 X_1 X_2 X_3

- m identical machines \Box
- *n* jobs with known, independent job-size distributions $X_i \sim \bigwedge$

 X_1 X_2 X_3 X_1 *X*₂ t

- m identical machines \Box
- *n* jobs with known, independent job-size distributions $X_i \sim \bigwedge$

 X_1 X_2 X_3 $\Box \qquad X_2 \mid X_2 > t$ t

- m identical machines \Box
- *n* jobs with known, independent job-size distributions $X_i \sim \bigwedge$

 X_1 X_2 X_3 t

- m identical machines \Box
- *n* jobs with known, independent job-size distributions $X_i \sim \bigwedge$

X3 X₁ X₂

- m identical machines \square
- *n* jobs with known, independent job-size distributions $X_i \sim \bigwedge$

$$X_1$$
 X_2 X_3

Objective: minimize expected total completion time, $\sum_{j} \mathbb{E} C_{j}$

...compared to optimal adaptive policy that also only knows distributions

Past Work

- Shortest Processing Time is optimal for deterministic jobs [Bruno, Coffman Jr., Sethi, Commun. ACM 1974]
- Stochastic jobs seem much harder
 - $O(\Delta)$ -approximation, where $\Delta = max_j \frac{\mathbb{E}[X_j^2]}{\mathbb{E}[X_j]^2}$ is coefficient of variation via LP

rounding [Möhring, Schulz, Uetz, J. ACM 1999]

- ...but all known LP's have integrality gap $\Omega(\Delta)$ [Skutella, Sviridenko, Uetz, Math. Oper. Res. 2016]
- All distribution-independent approximations are $\Omega(m)$ [Im, Moseley, Pruhs, STACS 2015]
- ...and there are strong lower bounds for "greedy-like" policies [Eberle, Fischer, Matuschke, Megow, Oper. Res. Lett. 2019]

Our Results

Main Theorem: There exists an efficient algorithm that is $\tilde{O}(\sqrt{m})$ -approximate for minimizing total completion time of stochastic jobs for Bernoulli jobs $(X_j \sim s_j \cdot Ber(p_j))$

• First approximation that does not depend on coefficient of variation and is sublinear in number of machines

Our Results

Main Theorem: There exists an efficient algorithm that is $\tilde{O}(\sqrt{m})$ -approximate for minimizing total completion time of stochastic jobs for Bernoulli jobs $(X_j \sim s_j \cdot Ber(p_j))$

• First approximation that does not depend on coefficient of variation and is sublinear in number of machines

Idea: Optimize proxy objective (weighted free time)

Weighted Free Time

• To minimize completion time, suffices to minimize starting time, $\sum_{j} \mathbb{E} S_{j}$ (shift of objective by $\sum_{j} \mathbb{E} X_{j}$)

Weighted Free Time

• To minimize completion time, suffices to minimize starting time, $\sum_{j} \mathbb{E} S_{j}$ (shift of objective by $\sum_{j} \mathbb{E} X_{j}$)

Free Time: Let F_k to be the earliest time a machine is free after starting $n - \frac{n}{2^k}$ jobs

Weighted Free Time

• To minimize completion time, suffices to minimize starting time, $\sum_{j} \mathbb{E} S_{j}$ (shift of objective by $\sum_{j} \mathbb{E} X_{j}$)

Free Time: Let F_k to be the earliest time a machine is free after starting $n - \frac{n}{2^k}$ jobs

• To minimize starting time, suffices to minimize weighted free time: $\sum_{k=1}^{\log n} \frac{n}{2^k} \mathbb{E} F_k = \Theta(\sum_j \mathbb{E} S_j) \text{ Proof Sketch: } \Theta(\frac{n}{2^k}) \text{ jobs start in } [F_{k-1}, F_k]$

Minimizing Weighted Free Time

• Weighted free time: $\sum_{k=1}^{\log n} \frac{n}{2^k} \mathbb{E} F_k$

 F_k is earliest time a machine is free after starting $n - \frac{n}{2^k}$ jobs

Minimizing Weighted Free Time

• Weighted free time: $\sum_{k=1}^{\log n} \frac{n}{2^k} \mathbb{E} F_k$

 F_k is earliest time a machine is free after starting $n - \frac{n}{2^k}$ jobs

• Subset Selection: Choose nested sets of jobs $J_1 \subset J_2 \subset \cdots J_{\log n}$ such that J_1 comparable to Opt's first n - n/2, J_2 to first n - n/4, ...

Minimizing Weighted Free Time

• Weighted free time: $\sum_{k=1}^{\log n} \frac{n}{2^k} \mathbb{E} F_k$

 F_k is earliest time a machine is free after starting $n - \frac{n}{2^k}$ jobs

- Subset Selection: Choose nested sets of jobs $J_1 \subset J_2 \subset \cdots J_{\log n}$ such that J_1 comparable to Opt's first n n/2, J_2 to first n n/4, ...
- Batched Free Time Minimization: Schedule $J_1 \subset J_2 \subset \cdots J_{\log n}$ subject to the <u>batch constraint</u> (must schedule J_k before $J_{k+1} \setminus J_k$) such that the free time of J_k is comparable to F_k^*

- Consider Bernoulli jobs $X_j \sim s_j \cdot Ber(p_j)$
- Subset Selection: To construct J_k : for each possible size parameter, exclude the $n/2^k$ jobs with largest probability parameters*

- Consider Bernoulli jobs $X_j \sim s_j \cdot Ber(p_j)$
- Subset Selection: To construct J_k : for each possible size parameter, exclude the $n/2^k$ jobs with largest probability parameters*

•
$$|J_k| = n - \tilde{O}(\frac{n}{2^k})$$

• For all k, we have $J_k \subset J_k^*$ for all realizations of job sizes, where J_k^* is the first $n - \frac{n}{2^k}$ jobs of Opt Proof Idea: Exchange argument on optimal decision tree

* May assume there are $O(\log n)$ -many distinct size parameters by standard discretization argument

- Consider Bernoulli jobs $X_j \sim s_j \cdot Ber(p_j)$
- Subset Selection: To construct J_k : for each possible size parameter, exclude the $n/2^k$ jobs with largest probability parameters*

•
$$|J_k| = n - \tilde{O}(\frac{n}{2^k})$$

- For all k, we have $J_k \subset J_k^*$ for all realizations of job sizes, where J_k^* is the first $n \frac{n}{2^k}$ jobs of Opt Proof Idea: Exchange argument on optimal decision tree
- Batched Free Time Minimization: Schedule each $J_k \setminus J_{k-1}$ in increasing order of size parameter

* May assume there are $O(\log n)$ -many distinct size parameters by standard discretization argument

- Consider Bernoulli jobs $X_j \sim s_j \cdot Ber(p_j)$
- Subset Selection: To construct J_k : for each possible size parameter, exclude the $n/2^k$ jobs with largest probability parameters*

•
$$|J_k| = n - \tilde{O}(\frac{n}{2^k})$$

- For all k, we have $J_k \subset J_k^*$ for all realizations of job sizes, where J_k^* is the first $n \frac{n}{2^k}$ jobs of Opt Proof Idea: Exchange argument on optimal decision tree
- Batched Free Time Minimization: Schedule each $J_k \setminus J_{k-1}$ in increasing order of size parameter
 - Within each $J_k \setminus J_{k-1}$ (other than the jobs with size zero), we schedule all jobs in increasing order of realized size

* May assume there are $O(\log n)$ -many distinct size parameters by standard discretization argument

Key Lemma: For all realizations of job sizes, we can write the weighted free time of *Alg* as:

$$\sum_{k=1}^{\log n} \frac{n}{2^k} F_k \approx O\left(\sum_{k=1}^{\log n} \frac{n}{2^k} \frac{Vol(J_k \setminus J_{k-1}(\leq F_k^*))}{m - |J_{k-1}(>F_k^*)|}\right)$$

Key Lemma: For all realizations of job sizes, we can write the weighted free time of *Alg* as: $\sum_{k=1}^{\log n} \frac{n}{2^k} F_k \approx O\left(\sum_{k=1}^{\log n} \frac{n}{2^k} \frac{Vol(J_k \setminus J_{k-1}(\leq F_k^*))}{m - |J_{k-1}(>F_k^*)|}\right)$

Key Lemma: For all realizations of job sizes, we can write the weighted free time of *Alg* as: $\sum_{k=1}^{\log n} \frac{n}{2^k} F_k \approx O\left(\sum_{k=1}^{\log n} \frac{n}{2^k} \frac{Vol(J_k \setminus J_{k-1}(\leq F_k^*))}{m - |J_{k-1}(>F_k^*)|}\right)$

Key Lemma: For all realizations of job sizes, we can write the weighted free time of *Alg* as: $\sum_{k=1}^{\log n} \frac{n}{2^k} F_k \approx O\left(\sum_{k=1}^{\log n} \frac{n}{2^k} \frac{Vol(J_k \setminus J_{k-1}(\leq F_k^*))}{m - |J_{k-1}(>F_k^*)|}\right)$

Key Lemma: For all realizations of job sizes, we can write the weighted free time of *Alg* as: $\sum_{k=1}^{\log n} \frac{n}{2^k} F_k \approx O\left(\sum_{k=1}^{\log n} \frac{n}{2^k} \frac{Vol(J_k \setminus J_{k-1}(\leq F_k^*))}{m - |J_{k-1}(>F_k^*)|}\right)$

Key Lemma: For all realizations of job sizes, we can write the weighted free time of *Alg* as: $\sum_{k=1}^{\log n} \frac{n}{2^k} F_k \approx O\left(\sum_{k=1}^{\log n} \frac{n}{2^k} \frac{Vol(J_k \setminus J_{k-1}(\leq F_k^*))}{m - |J_{k-1}(>F_k^*)|}\right)$

• **Problem:** *Opt* may schedule same volume in much earlier batches than *Alg*

• **Problem:** *Opt* may schedule same volume in much earlier batches than *Alg*

Lemma: In expectation, the number of machines with no big job decrease by at most a half between batches

$$\sum_{k=1}^{\log n} \frac{n}{2^{k}} F_{k} \approx O\left(\sum_{k=1}^{\log n} \frac{n}{2^{k}} \frac{Vol(J_{k} \setminus J_{k-1}(\leq F_{k}^{*}))}{m - |J_{k-1}(>F_{k}^{*})|}\right)$$

• **Problem:** *Opt* may schedule same volume in much earlier batches than *Alg*

Lemma: In expectation, the number of machines with no big job decrease by at most a half between batches

$$\sum_{k=1}^{\log n} \frac{n}{2^{k}} F_{k} \approx O\left(\sum_{k=1}^{\log n} \frac{n}{2^{k}} \frac{Vol(J_{k} \setminus J_{k-1}(\leq F_{k}^{*}))}{m - |J_{k-1}(>F_{k}^{*})|}\right)$$

- \Rightarrow with high probability, the number of machines with no big job decrease by at most a half $\pm O(\sqrt{m})$ between batches
- Solution: If Opt decides to do a job in an earlier batch, the increase in number of available machines is offset by the increase in weight up to a $\tilde{O}(\sqrt{m})$ -factor

Summary

- $\tilde{O}(\sqrt{m})$ -approximation for minimizing total completion time of stochastic jobs for Bernoulli jobs ($X_j \sim s_j \cdot Ber(p_j)$)
- First approximation that is distribution-independent and o(m) even for more restricted special cases
- Idea: Optimize proxy objective (weighted free time)