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Minimizing Total Completion Time

• 𝑚 identical machines

• 𝑛 jobs with known, independent job-size distributions 𝑋𝑗 ∼

𝑋1 𝑋2 𝑋3

𝐶3𝐶1

𝐶2

Objective: minimize expected total 
completion time, σ𝑗 𝔼 𝐶𝑗

…compared to optimal adaptive policy 
that also only knows distributions



Past Work

• Shortest Processing Time is optimal for deterministic jobs [Bruno, Coffman Jr., 

Sethi, Commun. ACM 1974]

• Stochastic jobs seem much harder

• 𝑂 Δ -approximation, where Δ =  𝑚𝑎𝑥𝑗

𝔼[𝑋𝑗
2]

𝔼 𝑋𝑗
2 is coefficient of variation via LP 

rounding [Möhring, Schulz, Uetz, J. ACM 1999]

• …but all known LP’s have integrality gap Ω(Δ) [Skutella, Sviridenko, Uetz, Math. Oper. Res. 
2016]

• All distribution-independent approximations are Ω 𝑚  [Im, Moseley, Pruhs, STACS 2015]

• …and there are strong lower bounds for “greedy-like” policies [Eberle, Fischer, 
Matuschke, Megow, Oper. Res. Lett. 2019]



Our Results

Main Theorem: There exists an efficient algorithm that is ෨𝑂( 𝑚)-
approximate for minimizing total completion time of stochastic jobs for 
Bernoulli jobs (𝑋𝑗 ∼ 𝑠𝑗 ⋅ 𝐵𝑒𝑟(𝑝𝑗))

• First approximation that does not depend on coefficient of variation 
and is sublinear in number of machines
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Idea: Optimize proxy objective (weighted free time)
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• To minimize completion time, suffices to minimize starting time, 
σ𝑗 𝔼 𝑆𝑗  (shift of objective by σ𝑗 𝔼 𝑋𝑗) 

• To minimize starting time, suffices to minimize weighted free time: 

σ
𝒌=𝟏
𝐥𝐨𝐠 𝒏 𝒏

𝟐𝒌  𝔼 𝑭𝒌 = 𝚯(σ𝒋 𝔼 𝑺𝒋)
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Proof Sketch: Θ(
n

2𝑘) jobs start in [𝐹𝑘−1, 𝐹𝑘] 
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that  𝐽1 comparable to 𝑂𝑝𝑡’s first 𝑛 − 𝑛/2,  𝐽2 to first 𝑛 − 𝑛/4, …

• Batched Free Time Minimization: Schedule 𝐽1 ⊂ 𝐽2 ⊂ ⋯ 𝐽log 𝑛 subject 
to the batch constraint (must schedule 𝐽𝑘  before 𝐽𝑘+1 ∖ 𝐽𝑘) such that 
the free time of 𝐽𝑘  is comparable to 𝐹𝑘
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∗  is the 
first 𝒏 −

𝒏
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• Batched Free Time Minimization: Schedule each 𝐽𝑘 ∖ 𝐽𝑘−1 in 
increasing order of size parameter
• Within each 𝑱𝒌 ∖ 𝑱𝒌−𝟏 (other than the jobs with size zero), we schedule all 

jobs in increasing order of realized size 

* May assume there are 𝑂 log 𝑛 -many distinct size parameters by standard discretization argument

Proof Idea: Exchange argument on optimal decision tree
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Analysis Idea

• Problem: 𝑂𝑝𝑡 may schedule same volume in much earlier batches than 
𝐴𝑙𝑔
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𝐴𝑙𝑔
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• Solution: If 𝑂𝑝𝑡 decides to do a job in an earlier batch, the increase in 
number of available machines is offset by the increase in weight up to a 
෨𝑂( 𝑚)-factor

Lemma: In expectation, the number of machines with no big job decrease 
by at most a half between batches
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Summary

• ෨𝑂( 𝑚)-approximation for minimizing total completion time of 
stochastic jobs for Bernoulli jobs (𝑋𝑗 ∼ 𝑠𝑗 ⋅ 𝐵𝑒𝑟(𝑝𝑗))

• First approximation that is distribution-independent and 𝑜(𝑚) even  
for more restricted special cases

• Idea: Optimize proxy objective (weighted free time)
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