The Power of Migrations in
Dynamic Bin Packing

Konstantina Mellou Marco Molinaro Rudy Zhou

Microsoft Research Carnegie Mellon = Microsoft

To appear in Sigmetrics 2025

Dynamic Bin Packing

|
« LI

e ltems arrive online at their arrival time with sizes
* [tems depart after their (unknown) duration
* Must pack into unit-size bins

Dynamic Bin Packing -

|
« LI

e ltems arrive online at their arrival time with sizes
* [tems depart after their (unknown) duration
* Must pack into unit-size bins

|:I

Dynamic Bin Packing -

|
« LI

e ltems arrive online at their arrival time with sizes
* [tems depart after their (unknown) duration
* Must pack into unit-size bins

R

Dynamic Bin Packing o

e ltems arrive online at their arrival time with sizes
* [tems depart after their (unknown) duration

* Must pack into unit-size bins

Dynamic Bin Packing o

e ltems arrive online at their arrival time with sizes
* [tems depart after their (unknown) duration

* Must pack into unit-size bins

Dynamic Bin Packing -

|
« LI

e ltems arrive online at their arrival time with sizes
* [tems depart after their (unknown) duration
* Must pack into unit-size bins

kR

Dynamic Bin Packing -

|
« LI

e ltems arrive online at their arrival time with sizes
* [tems depart after their (unknown) duration
* Must pack into unit-size bins

A
I 1
[1
I 1

Minimize total active time over all bins

Dynamic Bin Packing -

|
« LI

e ltems arrive online at their arrival time with sizes
* [tems depart after their (unknown) duration
* Must pack into unit-size bins

-

Minimize total active time over all bins

Can also migrate items

max duration

Related Work #= Tnin duration

n = # items

* No migrations: O (u)-approximation (first fit)
Yusen Li, Xueyan Tang, Wentong Cai:
On dynamic bin packing for resource allocation in the cloud. SPAA 2014

* > n migrations: ~ 1.387 + e-approximation with O(—=) migrations

Bjorn Feldkord, Matthias Feldotto, Anupam Gupta, Guru Guruganesh, Amit Kumar, Soren Riechers, David Wajc:
Fully-Dynamic Bin Packing with Little Repacking. ICALP 2018

e Can get better guarantees with no migrations if know item durations
exactly or approximately (predictions)

Yossi Azar, Danny Vainstein:
Tight Bounds for Clairvoyant Dynamic Bin Packing. SPAA 2017

n
€

Mozhengfu Liu, Xueyan Tang:
Dynamic Bin Packing with Predictions. SIGMETRICS 2023

Niv Buchbinder, Yaron Fairstein, Konstantina Mellou, Ishai Menache, Joseph (Seffi) Naor:
Online Virtual Machine Allocation with Lifetime and Load Predictions. SIGMETRICS 2021

max duration

Related Work #= Tnin duration

n = # items

* No migrations: O (u)-approximation (first fit)

Yusen Li, Xueyan Tang, Wentong Cai:
On dynamic bin packing for resource allocation in the cloud. SPAA 2014

* > n migrations: = 1.387 + e-approximation with 0(~) migrations

Bjorn Feldkord, Matthias Feldotto, Anupam Gupta, Guru Guruganesh, Amit Kumar, Soren Rlechers David Wajc:
Fully-Dynamic Bin Packing with Little Repacking. ICALP 2018

e Can get better guarantees with no migrations if know item durations
exactly or approximately (predictions)

Yossi Azar, Danny Vainstein:
Tight Bounds for Clairvoyant Dynamic Bin Packing. SPAA 2017

Mozhengfu Liu, Xueyan Tang:

Dynamic Bin Packing with Predictions. SIGMETRICS 2023

Niv Buchbinder, Ya ' : S -
Online Virtual Mac What can we do W|th <n mlgratlons? En’? \/n?

Bad Example

. . . |
* u? items; all arriving at time 0 with size p

e u of them are long with duration u
* Rest are short with duration 1

Bad Example

. . . |
* u? items; all arriving at time 0 with size p

e u of them are long with duration u
* Rest are short with duration 1

Bad Example

. . . |
* u? items; all arriving at time 0 with size p

e u of them are long with duration u
* Rest are short with duration 1

N

Bad Example

. . . |
* u? items; all arriving at time 0 with size p

e u of them are long with duration u
* Rest are short with duration 1

Bad Example

. . . |
* u? items; all arriving at time 0 with size p

e u of them are long with duration u

Bad Example

. . . |
* u? items; all arriving at time 0 with size p

e u of them are long with duration u

ALG = p-p = Qu?)
J— OPT=u+(u —1)-1=0(n

%

Bad Example

. . . |
* u? items; all arriving at time 0 with size p

e u of them are long with duration u

ALG = p-p = Qu?)
OPT =+ (u —1)- 1= 0()

This actually happens in practice

Hugo Barbalhg Patr|C|a Kovagteski, Beibin Li, Luke Marshall, Marco Molinaro, Abhisek Pan, Eli Cortez, Matheus
Leao, Harsh P Tang, Larissa Rozales Goncalves, David Dion, Thomas Moscibroda, Ishai Menache:
ine Allocation with Lifetime Predictions. MLSys 2023

Our Results (Part 1)

* Sublinear migrations: Any algorithm that does o(n) migrations must
be Q(u)-approximate

.. 1 L .
* < n migrations: Forany € € (0,1), can get = — -approximation using
en migrations, and this is best possible*

* up to a logn additive term in approximation

Our Results (Part 1)

* Sublinear migrations: Any algorithm that does o(n) migrations must
be Q(u)-approximate

.. 1 L .
* < n migrations: Forany € € (0,1), can get = — -approximation using
en migrations, and this is best possible*

* > n migrations: = 1.387 4+ e-approximation with O(E%) migrations

* up to a logn additive term in approximation

< n migrations

1 L. : .
e Want = . -approximation = suffices to ensure most bins are = e-full

e Assume all items have same size*

* standard discretization argument; lose additive logn here

< n migrations

1 L. : .
e Want = . -approximation = suffices to ensure most bins are = e-full

e Assume all items have same size*
* Classify bins as bad and good

* standard discretization argument; lose additive logn here

< n migrations

1 L. : .
e Want = . -approximation = suffices to ensure most bins are = e-full

e Assume all items have same size*
* Classify bins as bad and good

Initially bad

I:I

* standard discretization argument; lose additive logn here

< n migrations

1 L. : .
e Want = . -approximation = suffices to ensure most bins are = e-full

e Assume all items have same size*
* Classify bins as bad and good

X Load reaches = 1 =
become good

S

Initially bad

* standard discretization argument; lose additive logn here

< n migrations

1 L. : .
e Want = . -approximation = suffices to ensure most bins are = e-full

e Assume all items have same size*
* Classify bins as bad and good

~ Load reaches = 1 = Load falls below € =
become good migrate all items away

S .

Initially bad

* standard discretization argument; lose additive logn here

< n migrations

1 L. : .
e Want = . -approximation = suffices to ensure most bins are = e-full

e Assume all items have same size*
* Classify bins as bad and good

~ Load reaches = 1 = Load falls below € =
become good migrate all items away

S .

 (Canensure < 1 bad bins at any time
* Migrate e-fraction of bin load when 1 — e-fraction departs

Initially bad

* standard discretization argument; lose additive logn here

Our Results (Part 1)

* Sublinear migrations: Any algorithm that does o(n) migrations must
be Q(u)-approximate

.. 1 L .
* < n migrations: Forany € € (0,1), can get = — -approximation using

en migrations, and this is best possible*
* > n migrations: = 1.387 4+ e-approximation with O(E%) migrations

Can we do better?

* up to a logn additive term in approximation

Real cost of migration

Remote
i Resources

e —-
Cloud
Persistent Disk |» ..o *| Networking |~

=
c H
i ﬁ H i .]
. 'E:'- : | Memory Pre-Copy H Memory Post-Copy >

Local SSD >

Cluster Networking

Source VMM

p >> ——— S

PI=Ey > > Networking | >

Ry .| S
| VM Running > vmPaused > VM Running >

Time

 Target VMM

Adam Ruprecht, Danny Jones, Dmitry Shiraev, Greg Harmon, Maya Spivak, Michael Krebs, Miche Baker-Harvey, Tyler Sanderson:
VM Live Migration At Scale. VEE 2018

Real cost of migration

Wl ———
- - Cloud JUUPPETRS
ER Persistent Disk |» ..o ™| Networking
- e e o ———— — —_— i - e e e e e G e e e e e e e
b
N
i {7 @ i =
= ' % : lMarrlury Pra-Copy } Mamory Post-Copy >
=118 D
.8 | S |LocalsSD >
= '
g uc-;’: 1mvuauu >

Idea Incorporate cost of migration more directly mto problem

/‘)MWS_)

= >3

4 > Memory PreCopy S>> Memory Past-Copy > |

E > LDcaI SSD } Networklng l >

e ‘ Soume Brﬂwnom = | rargm Bmwnnm e >

| VM Running } VM Running >
Time |

Adam Ruprecht, Danny Jones, Dmitry Shiraev, Greg Harmon, Maya Spivak, Michael Krebs, Miche Baker-Harvey, Tyler Sanderson:
VM Live Migration At Scale. VEE 2018

Dynamic Bin Packing with Delays

e ltems arrive online at their arrival time with sizes
* [tems depart after their (unknown) duration
* Must pack into unit-size bins

-

Minimize total active time over all bins

Can also migrate items

Dynamic Bin Packing with Delays

e ltems arrive online at their arrival time with sizes
* [tems depart after their (unknown) duration

* Must pack into unit-size bins
B k_

Minimize total active time over all bins

Can also migrate items, but migrating increases item duration by +C

Dynamic Bin Packing with Delays

e ltems arrive online at their arrival time with sizes
* [tems depart after their (unknown) duration

* Must pack into unit-size bins
_ K| ¢
- e

Minimize total active time over all bins

Can also migrate items, but migrating increases item duration by +C

Dynamic Bin Packing with Delays

e ltems arrive online at their arrival time with sizes
* [tems depart after their (unknown) duration

* Must pack into unit-size bins

Minimize total active time over all bins

Can also migrate items, but migrating increases item duration by +C

Our Results (Part 2)

. O(min(\/f, ,u))—approximation for Dynamic bin packing with delays,
and this is best possible*

* some normalization assumptions apply

Our Results (Part 2)

. O(min(\/f, u))—approximation for Dynamic bin packing with delays,
and this is best possible*

e Best of both worlds: never worse than doing no migrations, but can
be much better

* some normalization assumptions apply

Our Results (Part 2)

. O(min(\/f, u))—approximation for Dynamic bin packing with delays,
and this is best possible*

e Best of both worlds: never worse than doing no migrations, but can
be much better

* In practice, the minimum duration can be = 1 millisecond, and the
maximum = 1 year = u ~ 101

« However, migrating an item incurs a delay of = 1 second = C ~ 10°

* some normalization assumptions apply

Dynamic Bin Packing with Delays

* When to migrate?
* Recall bad example: all items have same size, some short, some long

Dynamic Bin Packing with Delays

* When to migrate?
* Recall bad example: all items have same size, some short, some long

First Try: Migrate at time C

Dynamic Bin Packing with Delays

* When to migrate?
* Recall bad example: all items have same size, some short, some long

C
[
A

First Try: Migrate at time C

Dynamic Bin Packing with Delays

* When to migrate?

* Recall bad example: all items have same size, some short, some long

e [

First Try: Migrate at time C

Dynamic Bin Packing with Delays

* When to migrate?

* Recall bad example: all items have same size, some short, some long

Bad assignment for C time units Good assignment, but increased durations by 0 (1)-factor

First Try: Migrate at time C

Dynamic Bin Packing with Delays

* When to migrate?

* Recall bad example: all items have same size, some short, some long

v

— — —

Algorithm: Migrate after every VC time units

Bad assignment for V€ time units Good assignment, but increased durations by O(ﬁ)-factor

Our Results (Part 2)

. O(min(\/f, u))—approximation for Dynamic bin packing with delays,
and this is best possible*

e Best of both worlds: never worse than doing no migrations, but can
be much better

* In practice, the minimum duration can be = 1 millisecond, and the
maximum = 1 year = u ~ 101

« However, migrating an item incurs a delay of = 1 second = C ~ 10°

* some normalization assumptions apply

Experiments

e Data from Microsoft Azure (VM requests)

* Combine both < n migration and delay algorithms (classify bins as bad
and good; only migrate items after every C time units)

~
o
o

[or)
=

wn
o

&
L]

- C=10 seconds

w
o

- C=100 seconds

- C=1000 seconds

Improvement Total Active Time
N
Q

Improvement Total Active Time

-
D

o
3

0% 1% 2% 3% 4% 5% 6% 7% 8% 09 1% 2% 3% 4% 5% 6% 7%
Migrations Migrations

Ori Hadary, Luke Marshall, Ishai Menache, Abhisek Pan, Esaias E. Greeff, David Dion, Star
Dorminey, Shailesh Joshi, Yang Chen, Mark Russinovich, Thomas Moscibroda:
Protean: VM Allocation Service at Scale. OSDI 2020

Conclusion

* Fill gaps in our understanding)
for o(n) and en migrations W

: =
: S
* Introduce delays to dynamic bin = ¢ I [2 >
. 8 {8 [LocalsSD > ;
packing &
| Clust-er Networking
= EEDS T N
% { > Memory Pre-Copy > Memory Post -Copy
e i
i > Local SSD - Networking
| Source Brownout >| Blackout | Target Brownout >
| VM Running >| VM Paused > VM Running

Time

Conclusion

* Fill gaps in our understanding = N [.

T
o -

for O(n) and en migrations """""" ,—“-7--—.—5 ___________________
* Introduce delays to dynamic bin = I EETTE [T >
packing i =D
| . Clust-er Networking
Open Questions: z . E >>zpo b
* Remove additive logn in en S | —
mlgrathn case Source Brﬁ:::::mmg §||BI3:O:;USN Target Brownol.::m —— >

 Beyond worst case model Time
* Consider networking limits

	Slide 1: The Power of Migrations in Dynamic Bin Packing
	Slide 2: Dynamic Bin Packing
	Slide 3: Dynamic Bin Packing
	Slide 4: Dynamic Bin Packing
	Slide 5: Dynamic Bin Packing
	Slide 6: Dynamic Bin Packing
	Slide 7: Dynamic Bin Packing
	Slide 8: Dynamic Bin Packing
	Slide 9: Dynamic Bin Packing
	Slide 10: Related Work
	Slide 11: Related Work
	Slide 12: Bad Example
	Slide 13: Bad Example
	Slide 14: Bad Example
	Slide 15: Bad Example
	Slide 16: Bad Example
	Slide 17: Bad Example
	Slide 18: Bad Example
	Slide 19: Our Results (Part 1)
	Slide 20: Our Results (Part 1)
	Slide 21: less than n migrations
	Slide 22: less than n migrations
	Slide 23: less than n migrations
	Slide 24: less than n migrations
	Slide 25: less than n migrations
	Slide 26: less than n migrations
	Slide 27: Our Results (Part 1)
	Slide 28: Real cost of migration
	Slide 29: Real cost of migration
	Slide 30: Dynamic Bin Packing with Delays
	Slide 31: Dynamic Bin Packing with Delays
	Slide 32: Dynamic Bin Packing with Delays
	Slide 33: Dynamic Bin Packing with Delays
	Slide 34: Our Results (Part 2)
	Slide 35: Our Results (Part 2)
	Slide 36: Our Results (Part 2)
	Slide 37: Dynamic Bin Packing with Delays
	Slide 38: Dynamic Bin Packing with Delays
	Slide 39: Dynamic Bin Packing with Delays
	Slide 40: Dynamic Bin Packing with Delays
	Slide 41: Dynamic Bin Packing with Delays
	Slide 42: Dynamic Bin Packing with Delays
	Slide 43: Our Results (Part 2)
	Slide 44: Experiments
	Slide 45: Conclusion
	Slide 46: Conclusion

