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Related Work #= Tnin duration

n = # items

* No migrations: O (u)-approximation (first fit)
Yusen Li, Xueyan Tang, Wentong Cai:
On dynamic bin packing for resource allocation in the cloud. SPAA 2014

* > n migrations: ~ 1.387 + e-approximation with O(—=) migrations

Bjorn Feldkord, Matthias Feldotto, Anupam Gupta, Guru Guruganesh, Amit Kumar, Soren Riechers, David Wajc:
Fully-Dynamic Bin Packing with Little Repacking. ICALP 2018

e Can get better guarantees with no migrations if know item durations
exactly or approximately (predictions)

Yossi Azar, Danny Vainstein:
Tight Bounds for Clairvoyant Dynamic Bin Packing. SPAA 2017
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Mozhengfu Liu, Xueyan Tang:
Dynamic Bin Packing with Predictions. SIGMETRICS 2023

Niv Buchbinder, Yaron Fairstein, Konstantina Mellou, Ishai Menache, Joseph (Seffi) Naor:
Online Virtual Machine Allocation with Lifetime and Load Predictions. SIGMETRICS 2021
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Bad Example

. . . |
* u? items; all arriving at time 0 with size p

e u of them are long with duration u

ALG = p-p = Qu?)
OPT =+ (u —1)- 1= 0()

This actually happens in practice

Hugo Barbalhg Patr|C|a Kovagteski, Beibin Li, Luke Marshall, Marco Molinaro, Abhisek Pan, Eli Cortez, Matheus
Leao, Harsh P Tang, Larissa Rozales Goncalves, David Dion, Thomas Moscibroda, Ishai Menache:
ine Allocation with Lifetime Predictions. MLSys 2023
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Our Results (Part 1)

* Sublinear migrations: Any algorithm that does o(n) migrations must
be Q(u)-approximate

.. 1 L .
* < n migrations: Forany € € (0,1), can get = — -approximation using

en migrations, and this is best possible*
* > n migrations: = 1.387 4+ e-approximation with O(E%) migrations

Can we do better?

* up to a logn additive term in approximation
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Dynamic Bin Packing with Delays

* When to migrate?

* Recall bad example: all items have same size, some short, some long
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Algorithm: Migrate after every VC time units

Bad assignment for V€ time units Good assignment, but increased durations by O(ﬁ)-factor
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Experiments

e Data from Microsoft Azure (VM requests)

* Combine both < n migration and delay algorithms (classify bins as bad
and good; only migrate items after every C time units)
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