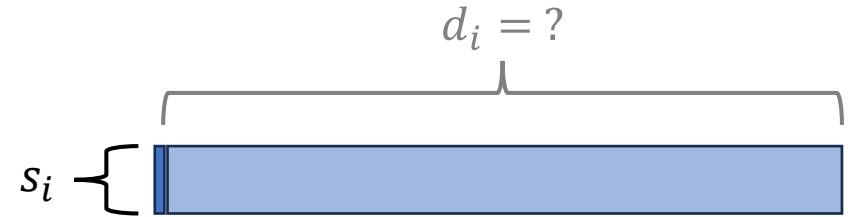


The Power of Migrations in Dynamic Bin Packing

Konstantina Mellou Marco Molinaro **Rudy Zhou**
Microsoft Research Carnegie Mellon ⇒ Microsoft

Dynamic Bin Packing



- Items arrive online at their **arrival time** with **sizes**
- Items depart after their **(unknown) duration**
- Must pack into **unit-size bins**

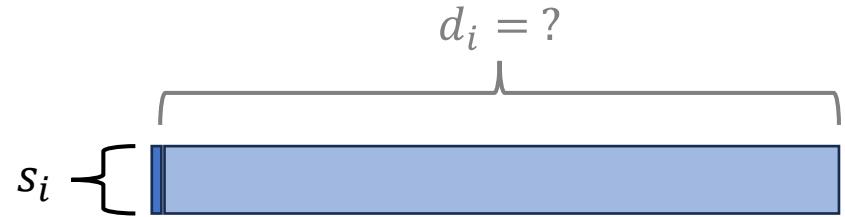
[

[

:

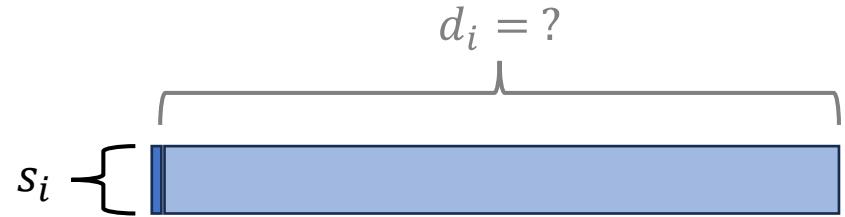
[

Dynamic Bin Packing



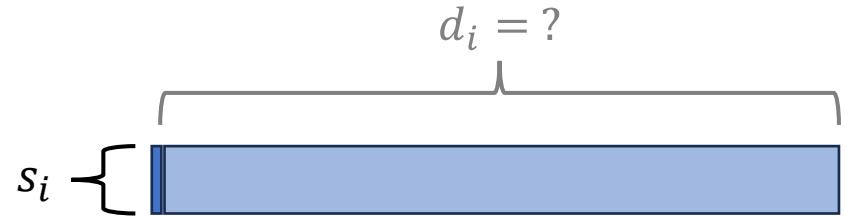
- Items arrive online at their **arrival time** with **sizes**
- Items depart after their **(unknown) duration**
- Must pack into **unit-size bins**

Dynamic Bin Packing

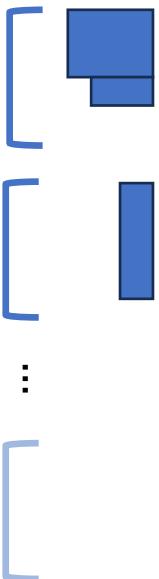


- Items arrive online at their **arrival time** with **sizes**
- Items depart after their **(unknown) duration**
- Must pack into **unit-size bins**

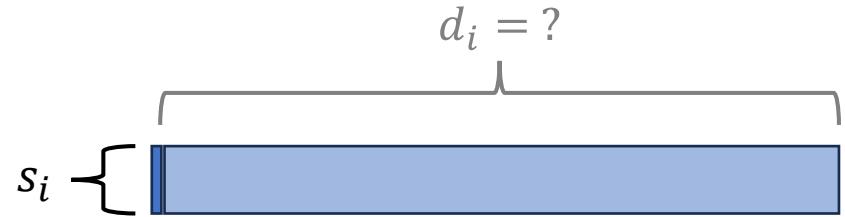
Dynamic Bin Packing



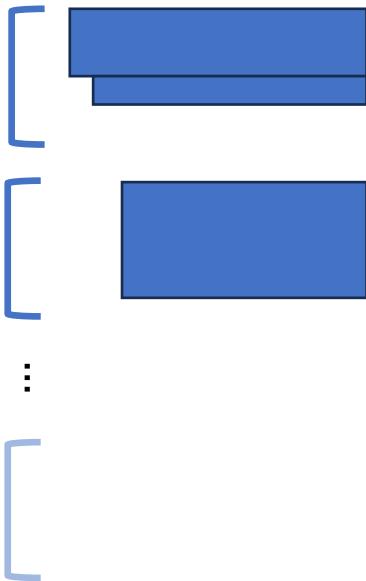
- Items arrive online at their **arrival time** with **sizes**
- Items depart after their **(unknown)** duration
- Must pack into **unit-size bins**



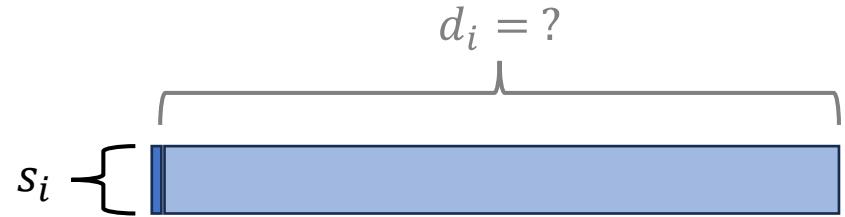
Dynamic Bin Packing



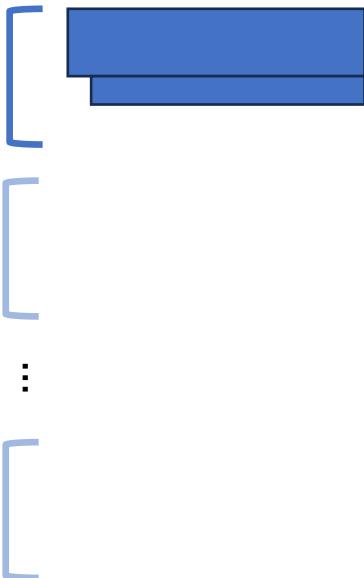
- Items arrive online at their **arrival time** with **sizes**
- Items depart after their **(unknown) duration**
- Must pack into **unit-size bins**



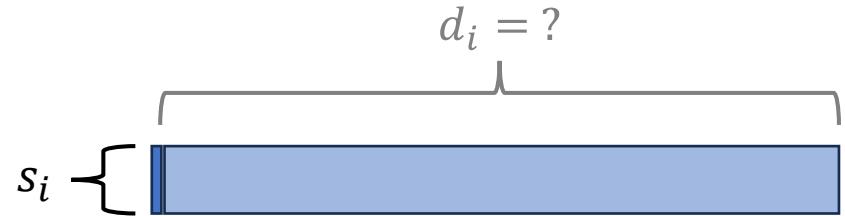
Dynamic Bin Packing



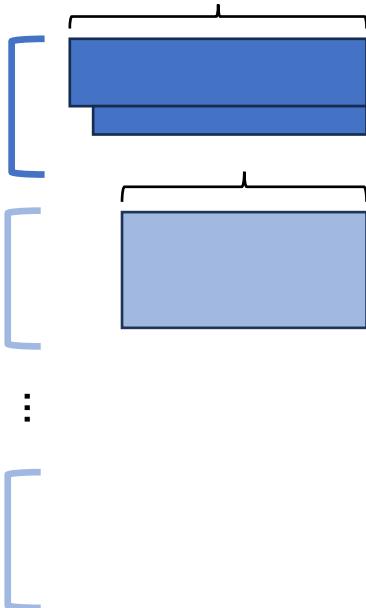
- Items arrive online at their **arrival time** with **sizes**
- Items depart after their **(unknown) duration**
- Must pack into **unit-size bins**



Dynamic Bin Packing

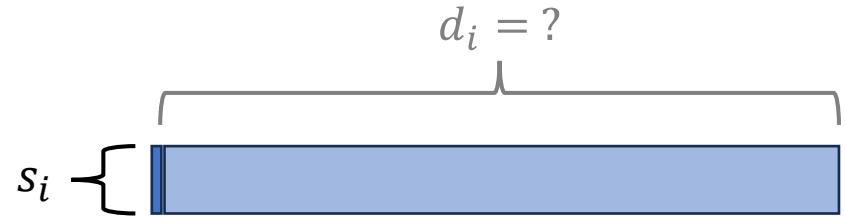


- Items arrive online at their **arrival time** with **sizes**
- Items depart after their **(unknown)** duration
- Must pack into **unit-size bins**

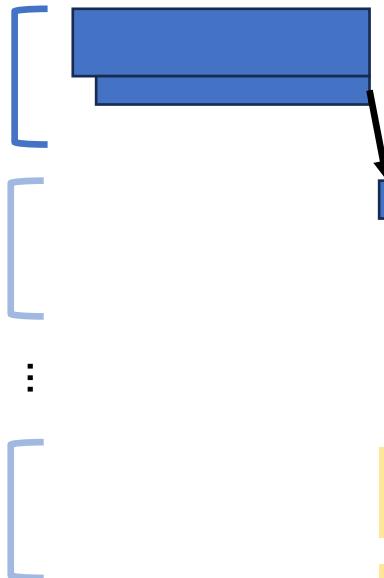


Minimize total active time over all bins

Dynamic Bin Packing



- Items arrive online at their **arrival time** with **sizes**
- Items depart after their **(unknown) duration**
- Must pack into **unit-size bins**



Minimize total active time over all bins

Can also **migrate** items

Related Work

$$\mu = \frac{\text{max duration}}{\text{min duration}}$$
$$n = \# \text{ items}$$

- **No migrations:** $\Theta(\mu)$ -approximation (first fit)

Yusen Li, Xueyan Tang, Wentong Cai:

On dynamic bin packing for resource allocation in the cloud. SPAA 2014

- **> n migrations:** $\approx 1.387 + \epsilon$ -approximation with $O(\frac{n}{\epsilon^2})$ migrations

Björn Feldkord, Matthias Feldotto, Anupam Gupta, Guru Guruganesh, Amit Kumar, Sören Riechers, David Wajc:

Fully-Dynamic Bin Packing with Little Repacking. ICALP 2018

- Can get better guarantees with no migrations if know item durations exactly or approximately (predictions)

Yossi Azar, Danny Vainstein:

Tight Bounds for Clairvoyant Dynamic Bin Packing. SPAA 2017

Mozhengfu Liu, Xueyan Tang:

Dynamic Bin Packing with Predictions. SIGMETRICS 2023

Niv Buchbinder, Yaron Fairstein, Konstantina Mellou, Ishai Menache, Joseph (Seffi) Naor:

Online Virtual Machine Allocation with Lifetime and Load Predictions. SIGMETRICS 2021

Related Work

$$\mu = \frac{\text{max duration}}{\text{min duration}}$$
$$n = \# \text{ items}$$

- **No migrations:** $\Theta(\mu)$ -approximation (first fit)

Yusen Li, Xueyan Tang, Wentong Cai:

On dynamic bin packing for resource allocation in the cloud. SPAA 2014

- **> n migrations:** $\approx 1.387 + \epsilon$ -approximation with $O(\frac{n}{\epsilon^2})$ migrations

Björn Feldkord, Matthias Feldotto, Anupam Gupta, Guru Guruganesh, Amit Kumar, Sören Riechers, David Wajc:

Fully-Dynamic Bin Packing with Little Repacking. ICALP 2018

- Can get better guarantees with no migrations if know item durations exactly or approximately (predictions)

Yossi Azar, Danny Vainstein:

Tight Bounds for Clairvoyant Dynamic Bin Packing. SPAA 2017

Mozhengfu Liu, Xueyan Tang:

Dynamic Bin Packing with Predictions. SIGMETRICS 2023

Niv Buchbinder, Yair Even, Kfir Levy, Michael Mitzenmacher, and David Zuckerman (2023). N

Online Virtual Machine Migration with Predictions. FOCS 2023

What can we do with $< n$ migrations? ϵn ? \sqrt{n} ?

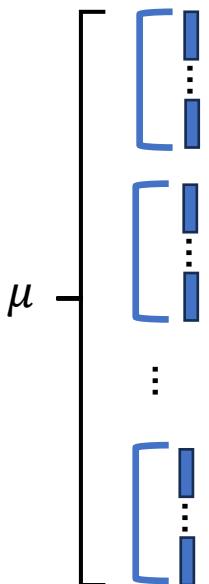
Bad Example

- μ^2 items; all arriving at time 0 with size $\frac{1}{\mu}$
 - μ of them are **long** with duration μ
 - Rest are **short** with duration 1

⋮

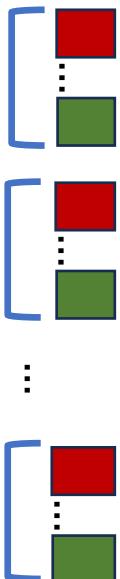
Bad Example

- μ^2 items; all arriving at time 0 with size $\frac{1}{\mu}$
 - μ of them are **long** with duration μ
 - Rest are **short** with duration 1



Bad Example

- μ^2 items; all arriving at time 0 with size $\frac{1}{\mu}$
 - μ of them are **long** with duration μ
 - Rest are **short** with duration 1



Bad Example

- μ^2 items; all arriving at time 0 with size $\frac{1}{\mu}$
 - μ of them are **long** with duration μ
 - Rest are **short** with duration 1

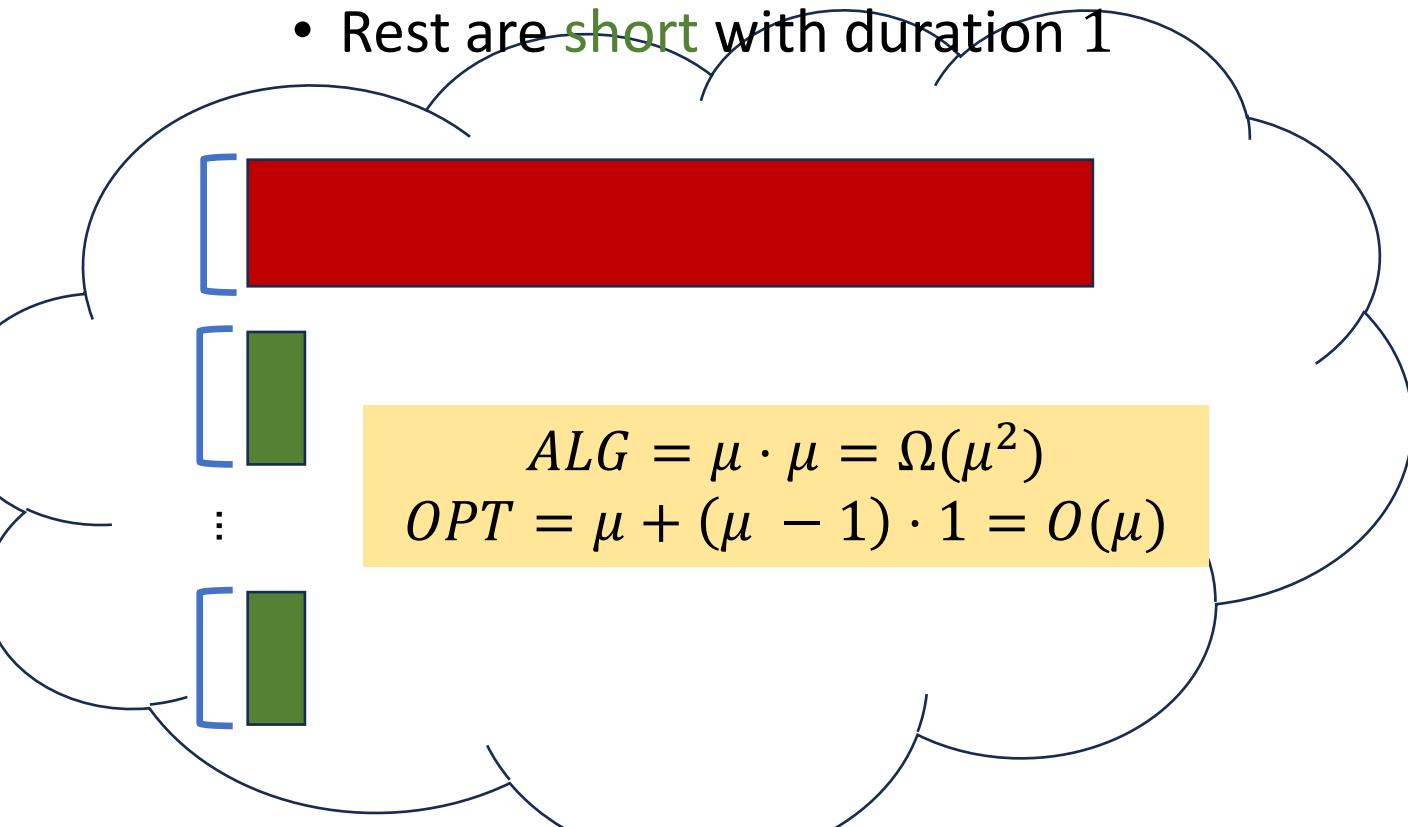
Bad Example

- μ^2 items; all arriving at time 0 with size $\frac{1}{\mu}$
 - μ of them are **long** with duration μ
 - Rest are **short** with duration 1



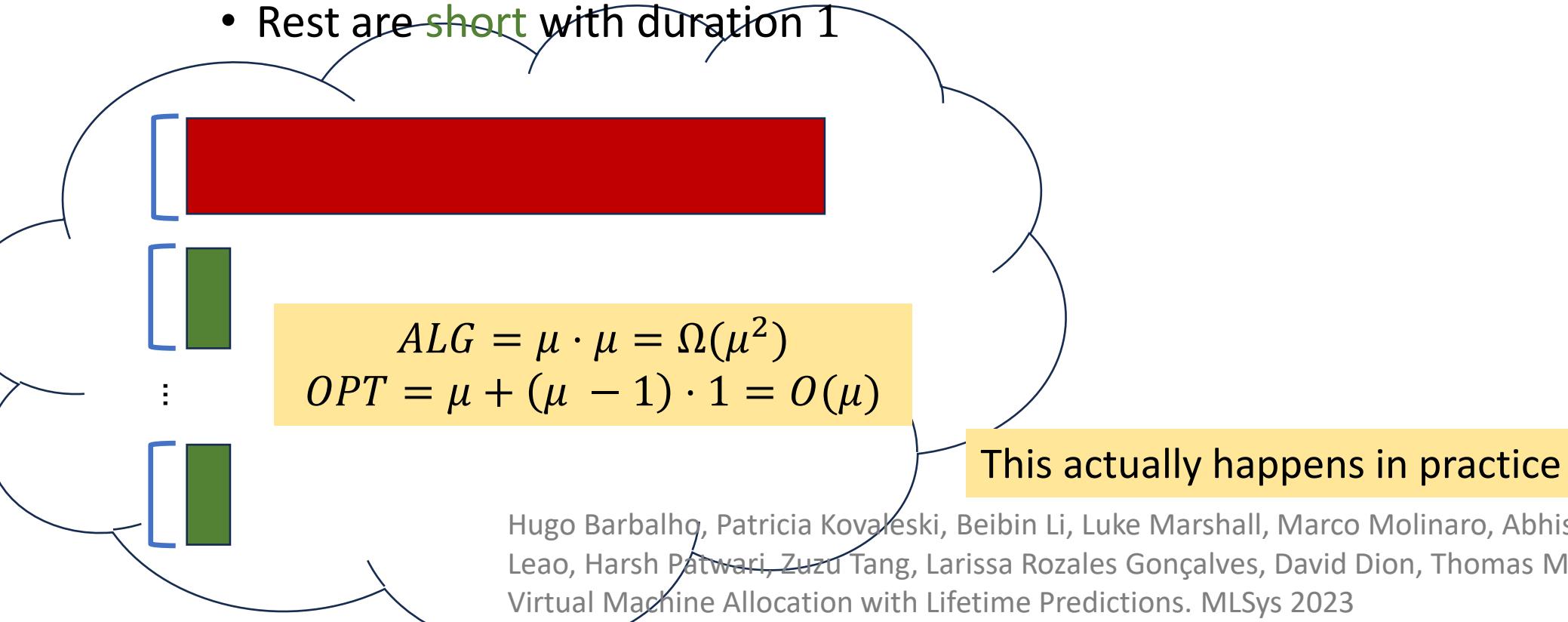
Bad Example

- μ^2 items; all arriving at time 0 with size $\frac{1}{\mu}$
 - μ of them are **long** with duration μ
 - Rest are **short** with duration 1



Bad Example

- μ^2 items; all arriving at time 0 with size $\frac{1}{\mu}$
 - μ of them are **long** with duration μ
 - Rest are **short** with duration 1



Our Results (Part 1)

- **Sublinear migrations:** Any algorithm that does $o(n)$ migrations must be $\Omega(\mu)$ -approximate
- **$< n$ migrations:** For any $\epsilon \in (0, 1)$, can get $\approx \frac{1}{\epsilon}$ -approximation using ϵn migrations, and this is best possible*

* up to a $\log n$ additive term in approximation

Our Results (Part 1)

- **Sublinear migrations:** Any algorithm that does $o(n)$ migrations must be $\Omega(\mu)$ -approximate
- **$< n$ migrations:** For any $\epsilon \in (0, 1)$, can get $\approx \frac{1}{\epsilon}$ -approximation using ϵn migrations, and this is best possible*
- **$> n$ migrations:** $\approx 1.387 + \epsilon$ -approximation with $O(\frac{n}{\epsilon^2})$ migrations

* up to a $\log n$ additive term in approximation

$< n$ migrations

- Want $\approx \frac{1}{\epsilon}$ -approximation \Rightarrow suffices to ensure most bins are $\geq \epsilon$ -full
- Assume all items have same size*

* standard discretization argument; lose additive $\log n$ here

$< n$ migrations

- Want $\approx \frac{1}{\epsilon}$ -approximation \Rightarrow suffices to ensure most bins are $\geq \epsilon$ -full
- Assume all items have same size*
- Classify bins as **bad** and **good**

* standard discretization argument; lose additive $\log n$ here

$< n$ migrations

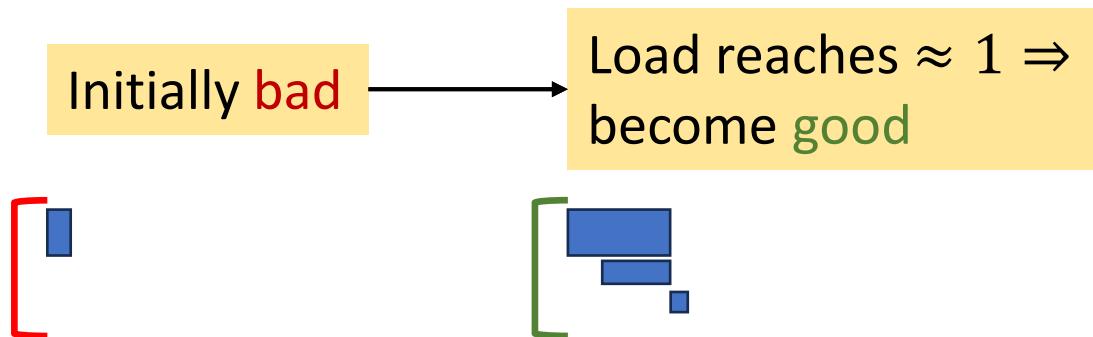
- Want $\approx \frac{1}{\epsilon}$ -approximation \Rightarrow suffices to ensure most bins are $\geq \epsilon$ -full
- Assume all items have same size*
- Classify bins as **bad** and **good**

Initially **bad**

* standard discretization argument; lose additive $\log n$ here

$< n$ migrations

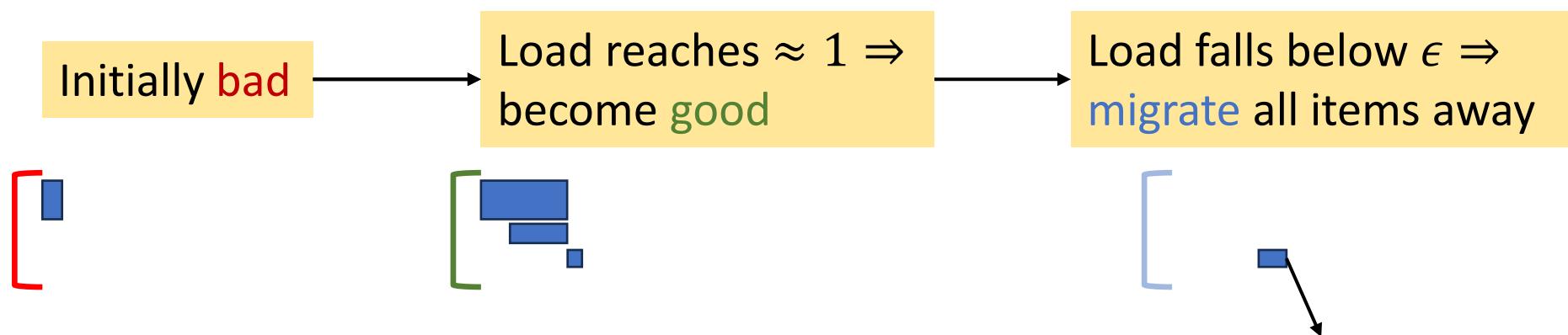
- Want $\approx \frac{1}{\epsilon}$ -approximation \Rightarrow suffices to ensure most bins are $\geq \epsilon$ -full
- Assume all items have same size*
- Classify bins as **bad** and **good**



* standard discretization argument; lose additive $\log n$ here

$< n$ migrations

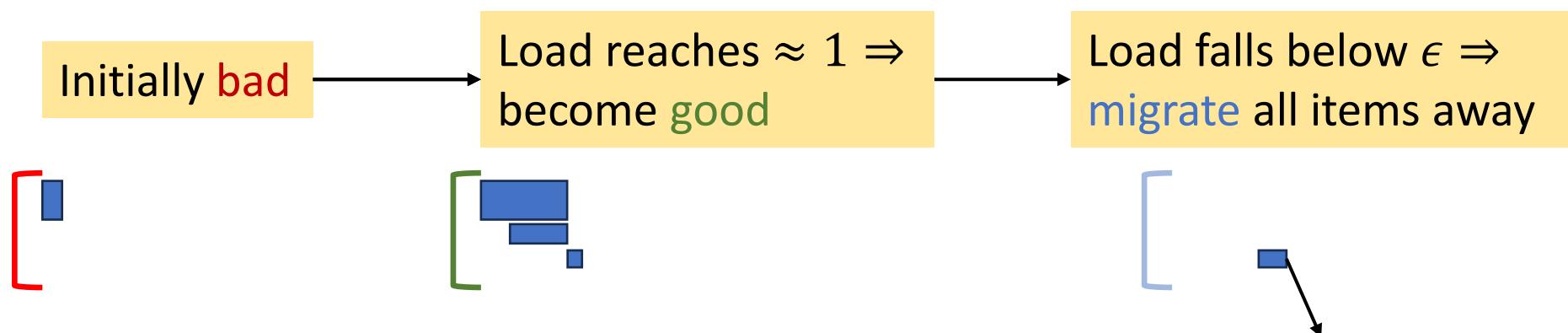
- Want $\approx \frac{1}{\epsilon}$ -approximation \Rightarrow suffices to ensure most bins are $\geq \epsilon$ -full
- Assume all items have same size*
- Classify bins as **bad** and **good**



* standard discretization argument; lose additive $\log n$ here

$< n$ migrations

- Want $\approx \frac{1}{\epsilon}$ -approximation \Rightarrow suffices to ensure most bins are $\geq \epsilon$ -full
- Assume all items have same size*
- Classify bins as **bad** and **good**



- Can ensure ≤ 1 bad bins at any time
- Migrate ϵ -fraction of bin load when $1 - \epsilon$ -fraction departs

* standard discretization argument; lose additive $\log n$ here

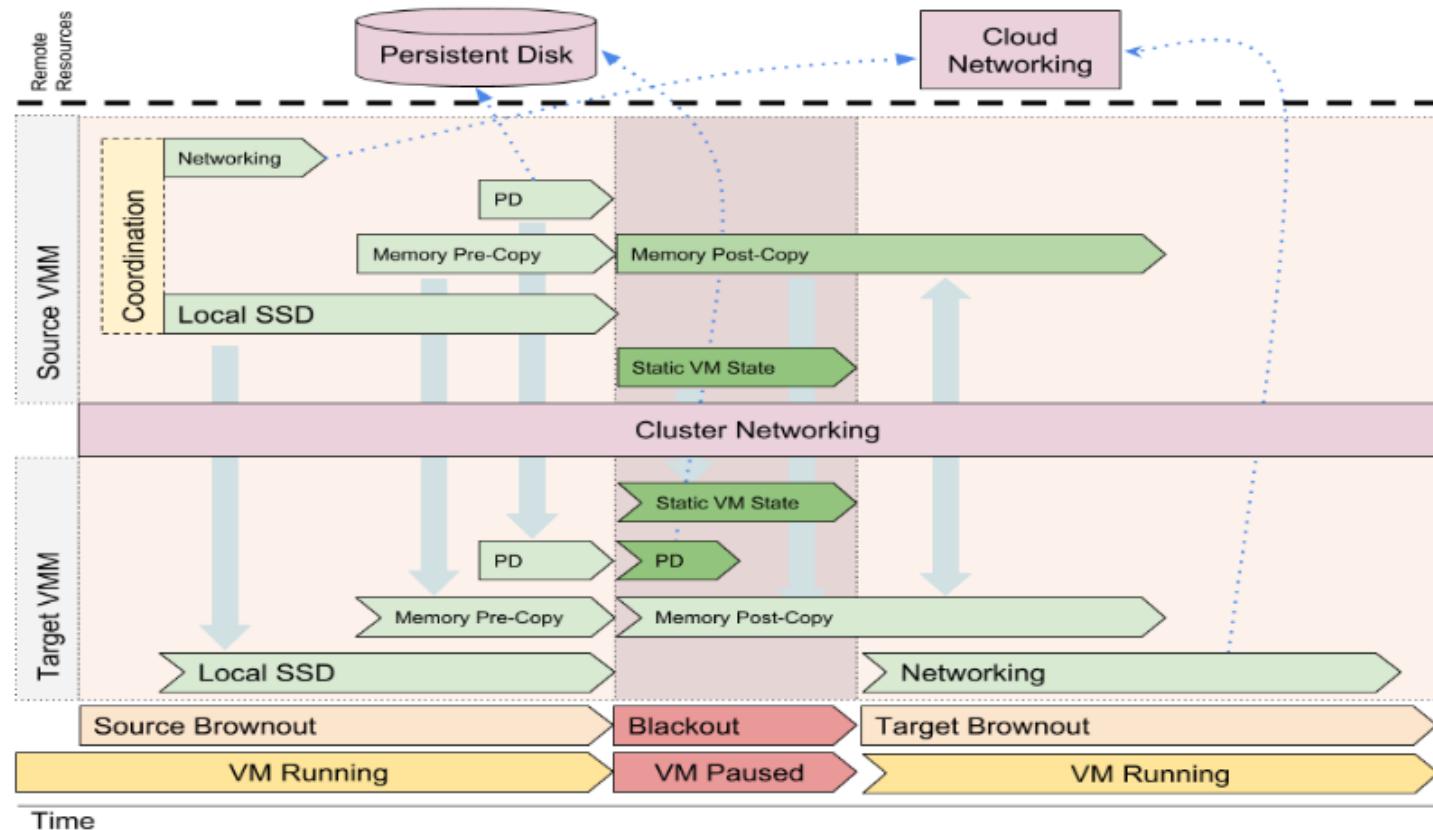
Our Results (Part 1)

- **Sublinear migrations:** Any algorithm that does $o(n)$ migrations must be $\Omega(\mu)$ -approximate
- **$< n$ migrations:** For any $\epsilon \in (0, 1)$, can get $\approx \frac{1}{\epsilon}$ -approximation using ϵn migrations, and this is best possible*
- **$> n$ migrations:** $\approx 1.387 + \epsilon$ -approximation with $O(\frac{n}{\epsilon^2})$ migrations

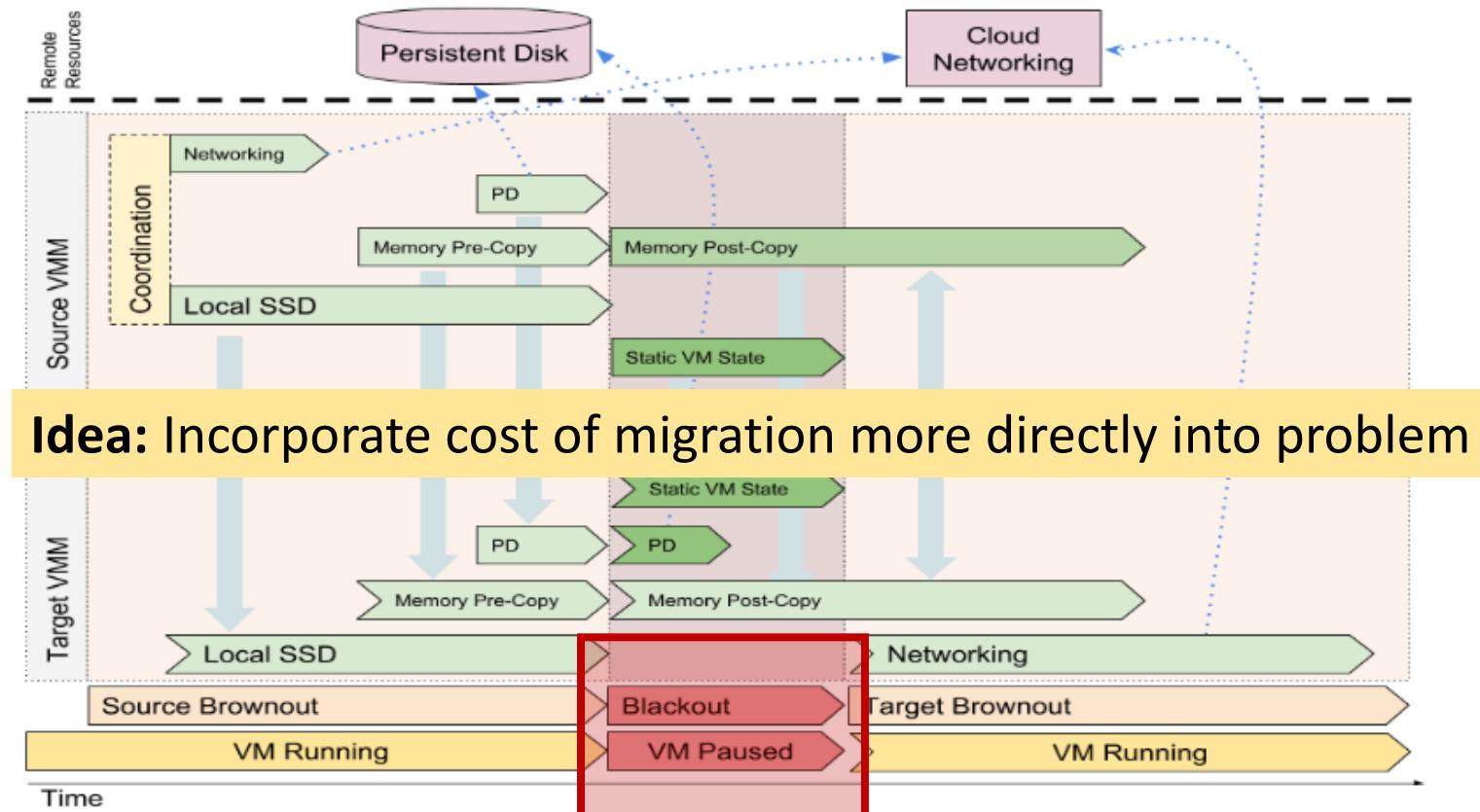
Can we do better?

* up to a $\log n$ additive term in approximation

Real cost of migration

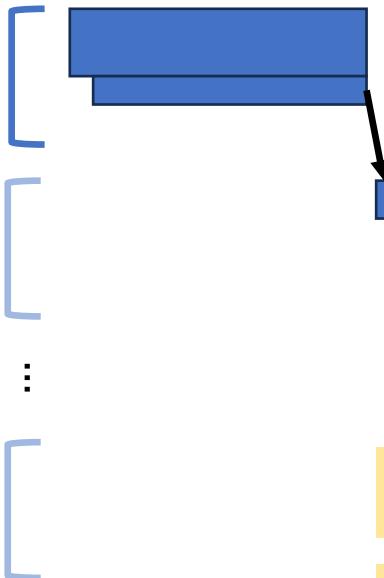


Real cost of migration



Dynamic Bin Packing with Delays

- Items arrive online at their **arrival time** with sizes
- Items depart after their **(unknown)** duration
- Must pack into **unit-size bins**

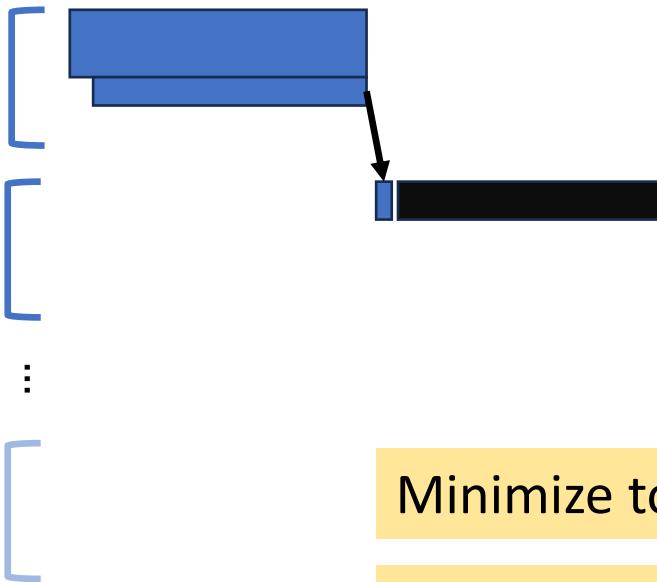


Minimize total active time over all bins

Can also **migrate** items

Dynamic Bin Packing with Delays

- Items arrive online at their **arrival time** with sizes
- Items depart after their **(unknown)** duration
- Must pack into **unit-size bins**

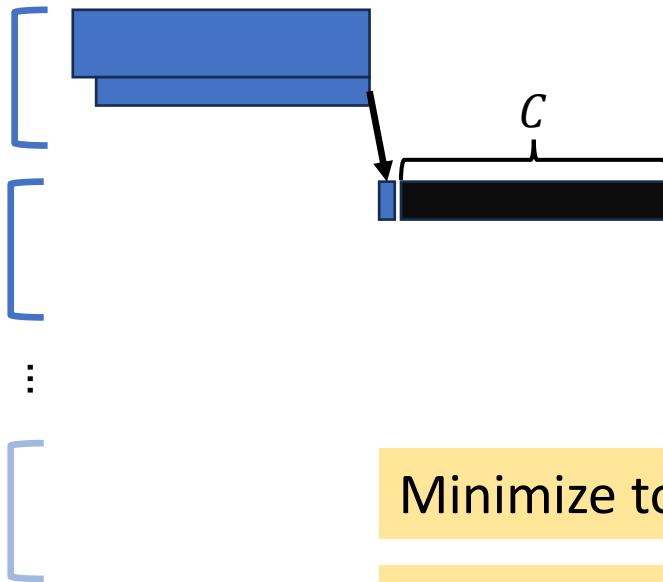


Minimize total active time over all bins

Can also migrate items, but migrating increases item duration by $+C$

Dynamic Bin Packing with Delays

- Items arrive online at their **arrival time** with sizes
- Items depart after their **(unknown)** duration
- Must pack into **unit-size bins**

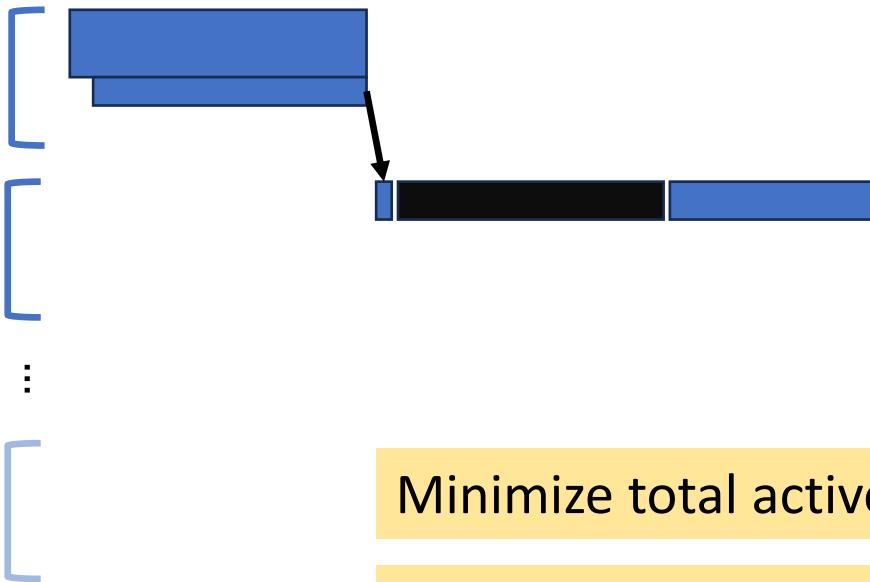


Minimize total active time over all bins

Can also migrate items, but migrating increases item duration by $+C$

Dynamic Bin Packing with Delays

- Items arrive online at their **arrival time** with sizes
- Items depart after their **(unknown)** duration
- Must pack into **unit-size bins**



Minimize total active time over all bins

Can also migrate items, but migrating increases item duration by $+C$

Our Results (Part 2)

- $O(\min(\sqrt{C}, \mu))$ -approximation for Dynamic bin packing **with delays**, and this is best possible*

* some normalization assumptions apply

Our Results (Part 2)

- $O(\min(\sqrt{C}, \mu))$ -approximation for Dynamic bin packing [with delays](#), and this is best possible*
- Best of both worlds: never worse than doing no migrations, but can be much better

* some normalization assumptions apply

Our Results (Part 2)

- $O(\min(\sqrt{C}, \mu))$ -approximation for Dynamic bin packing [with delays](#), and this is best possible*
- Best of both worlds: never worse than doing no migrations, but can be much better
- In practice, the minimum duration can be ≈ 1 millisecond, and the maximum ≈ 1 year $\Rightarrow \mu \approx 10^{10}$
- However, migrating an item incurs a delay of ≈ 1 second $\Rightarrow C \approx 10^3$

* some normalization assumptions apply

Dynamic Bin Packing with Delays

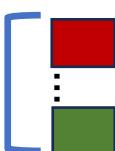
- When to migrate?
- Recall bad example: all items have same size, some short, some **long**

⋮

Dynamic Bin Packing with Delays

- When to migrate?
- Recall bad example: all items have same size, some short, some **long**

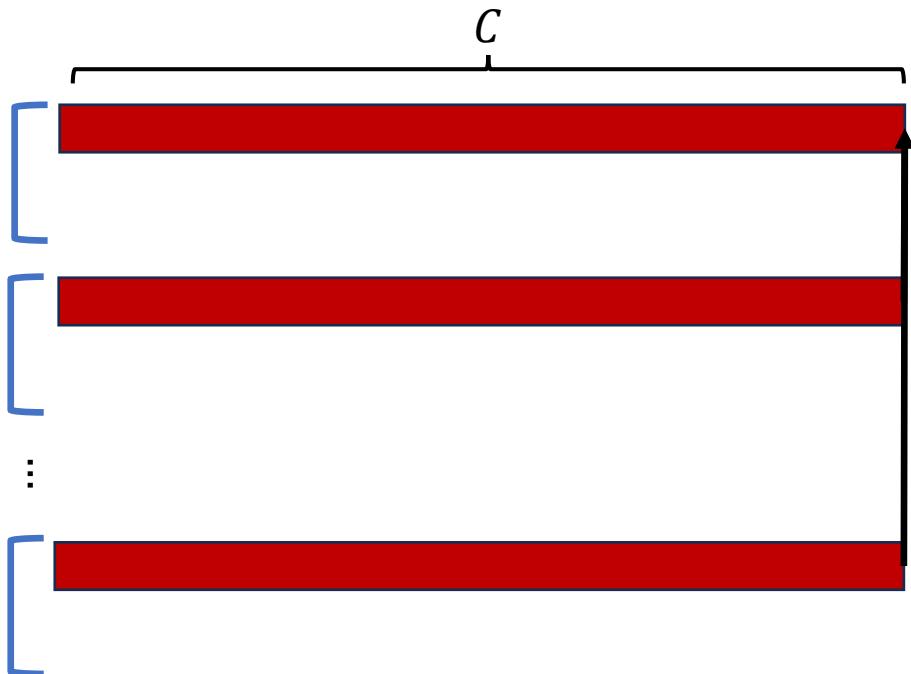
⋮



Dynamic Bin Packing with Delays

First Try: Migrate at time C

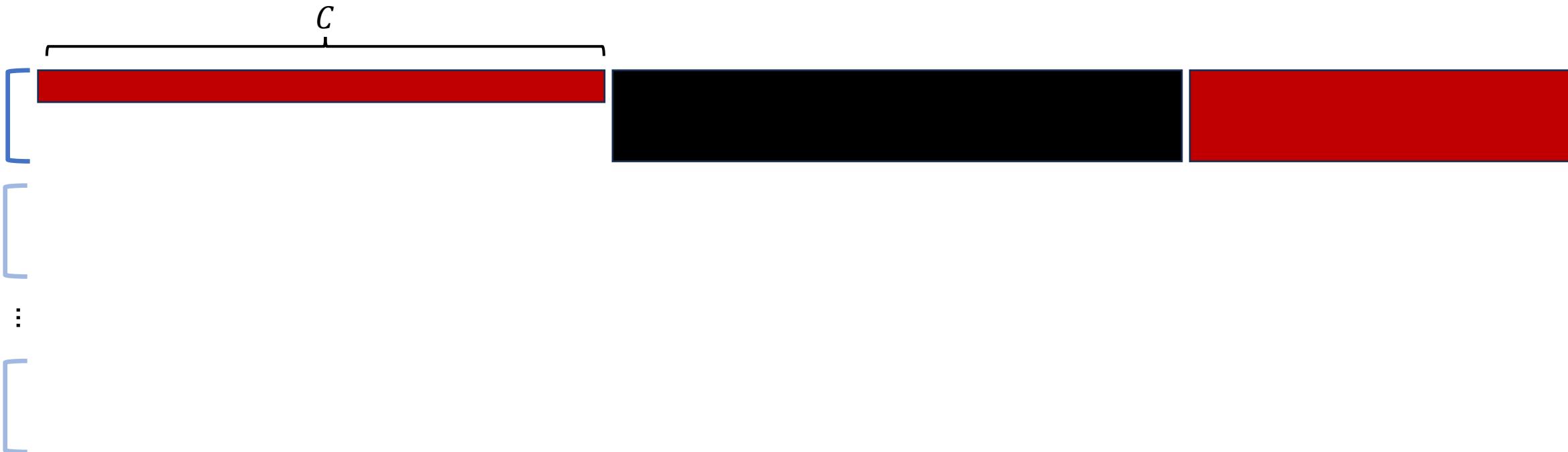
- When to migrate?
- Recall bad example: all items have same size, some short, some **long**



Dynamic Bin Packing with Delays

First Try: Migrate at time C

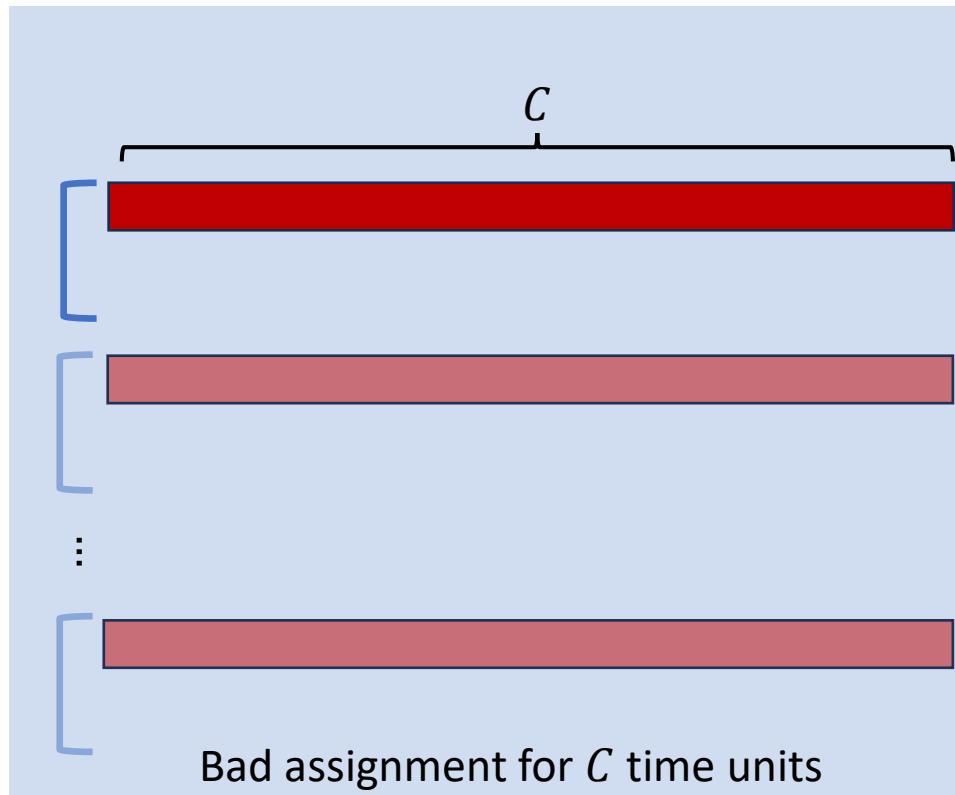
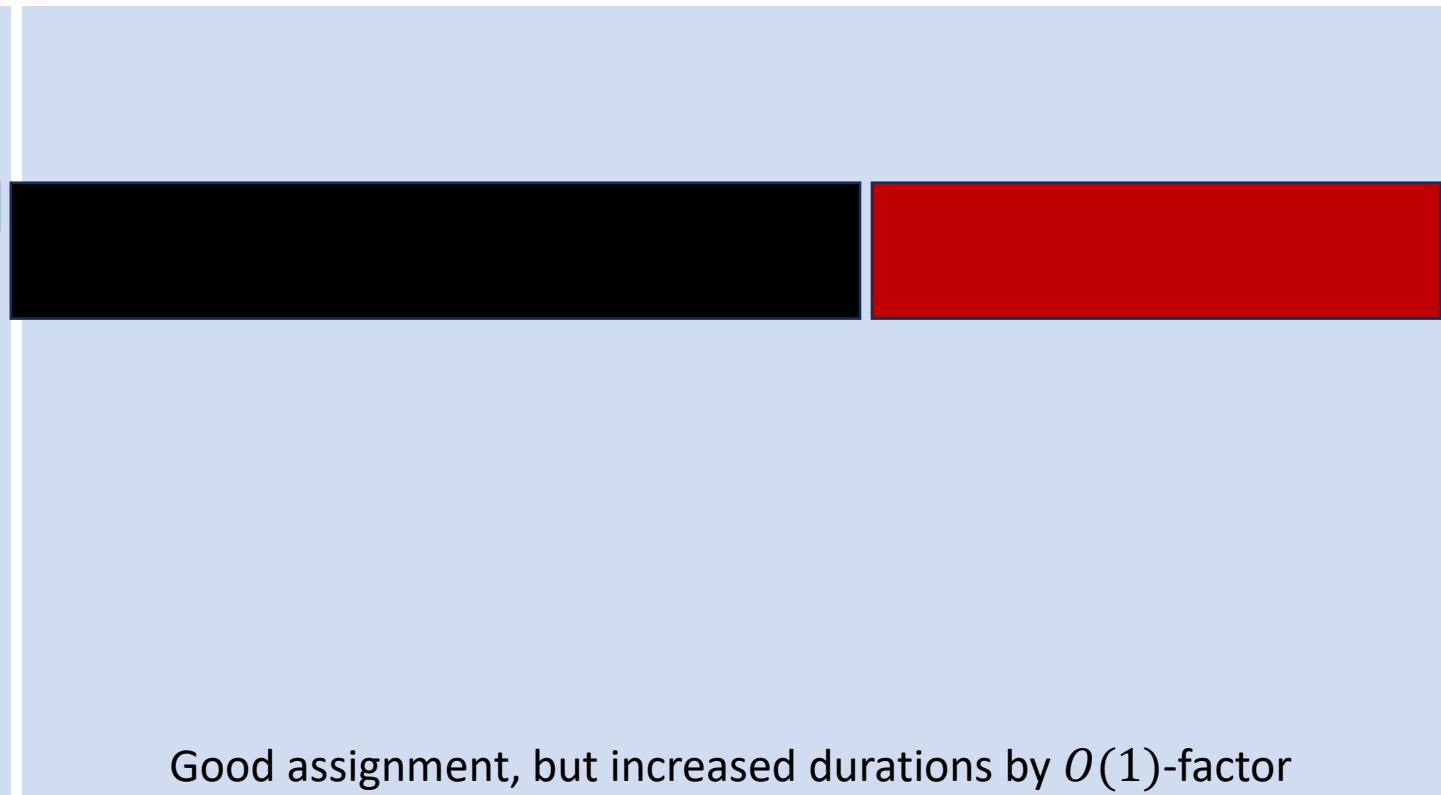
- When to migrate?
- Recall bad example: all items have same size, some short, some **long**



Dynamic Bin Packing with Delays

First Try: Migrate at time C

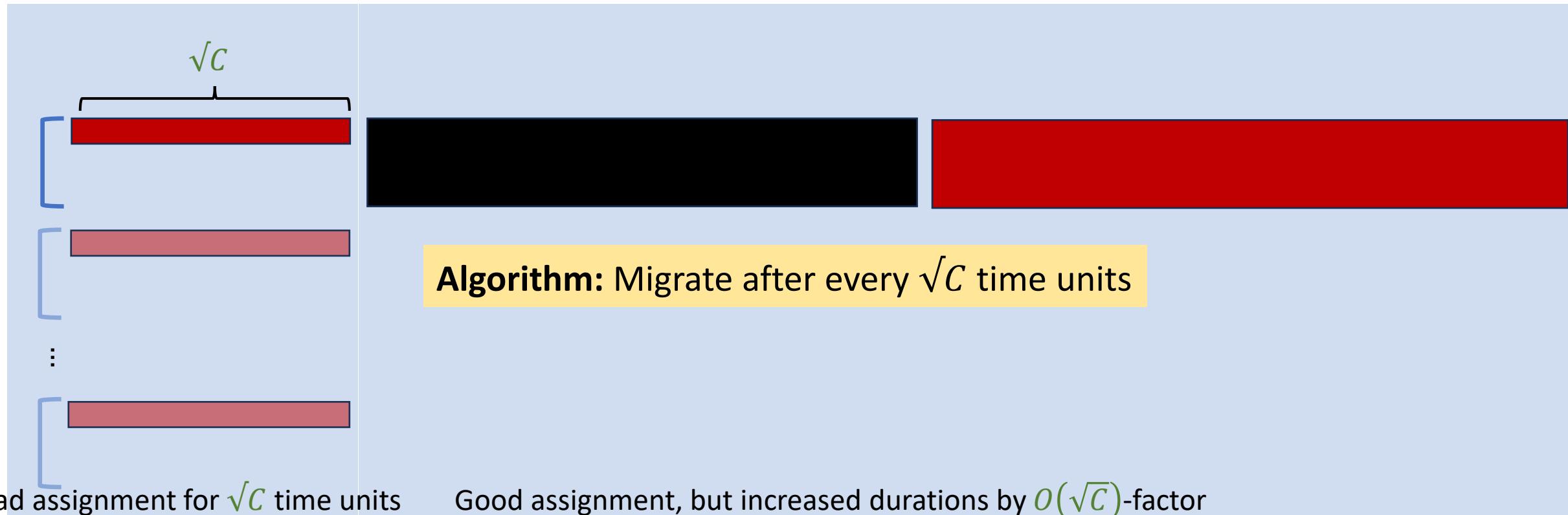
- When to migrate?
- Recall bad example: all items have same size, some short, some **long**



Dynamic Bin Packing with Delays

First Try: Migrate at time C

- When to migrate?
- Recall bad example: all items have same size, some short, some long



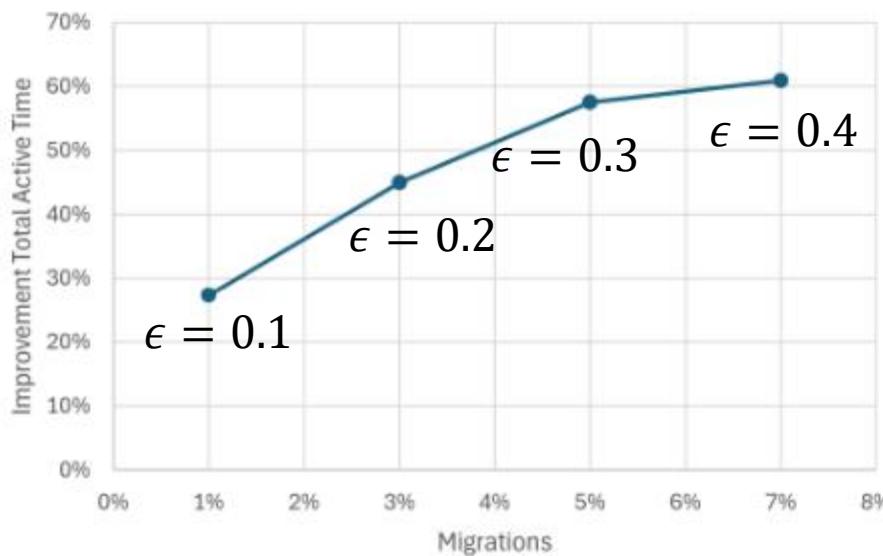
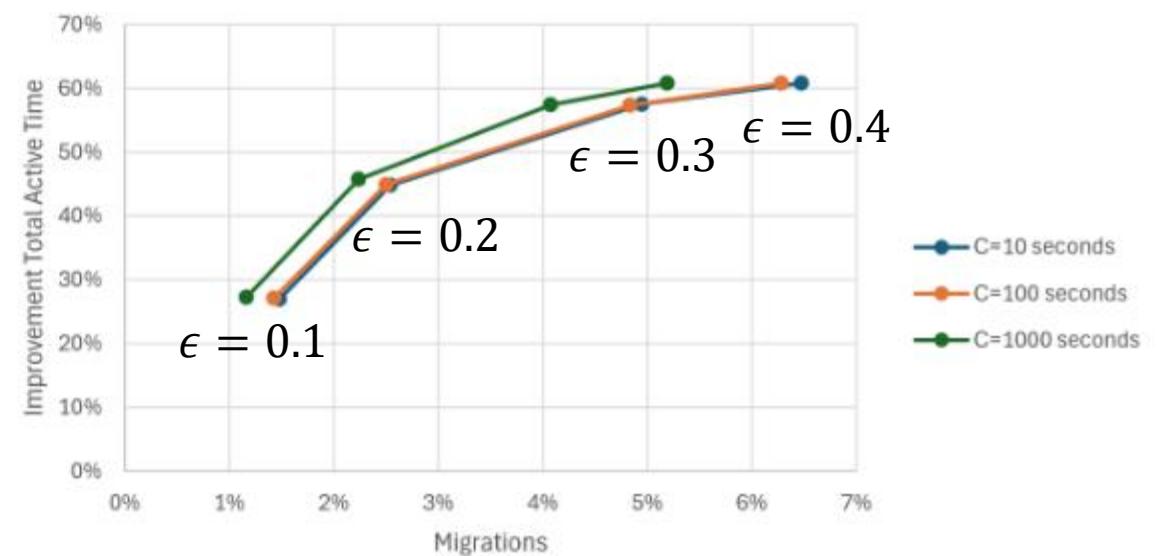
Our Results (Part 2)

- $O(\min(\sqrt{C}, \mu))$ -approximation for Dynamic bin packing [with delays](#), and this is best possible*
- Best of both worlds: never worse than doing no migrations, but can be much better
- In practice, the minimum duration can be ≈ 1 millisecond, and the maximum ≈ 1 year $\Rightarrow \mu \approx 10^{10}$
- However, migrating an item incurs a delay of ≈ 1 second $\Rightarrow C \approx 10^3$

* some normalization assumptions apply

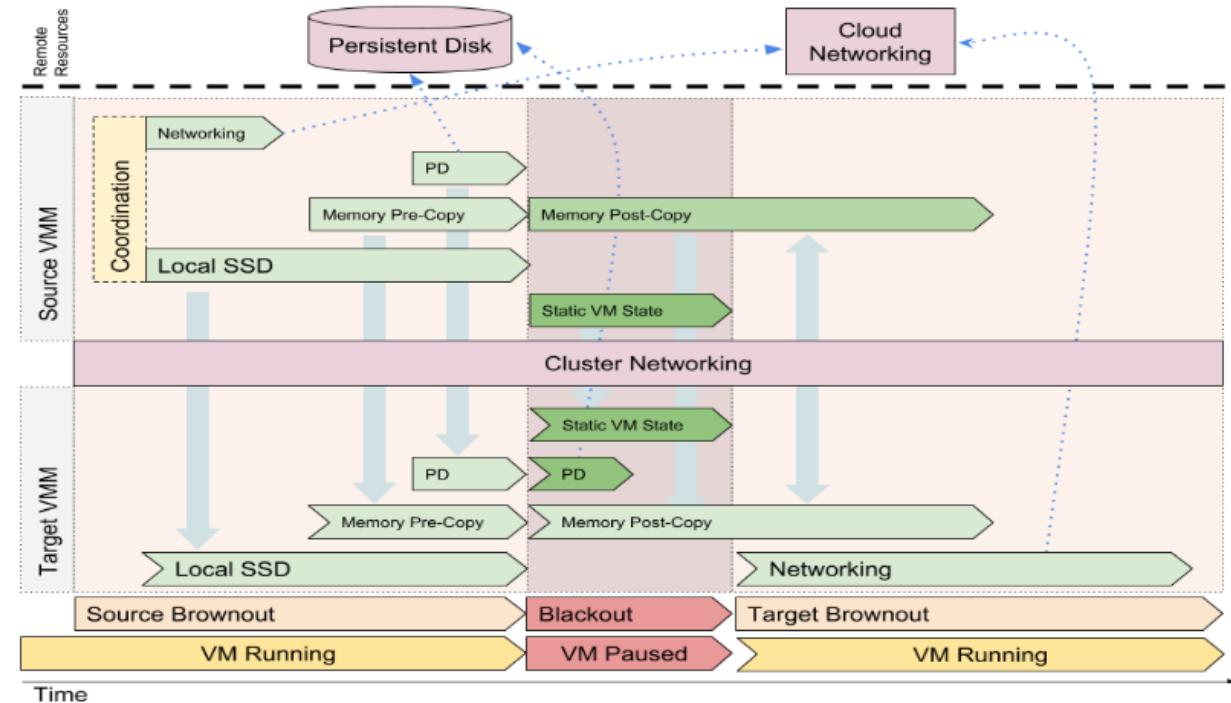
Experiments

- Data from Microsoft Azure (VM requests)
- Combine both $< n$ migration and delay algorithms (classify bins as bad and good; only migrate items after every C time units)



Conclusion

- Fill gaps in our understanding for $o(n)$ and ϵn migrations
- Introduce **delays** to dynamic bin packing



Conclusion

- Fill gaps in our understanding for $o(n)$ and ϵn migrations
- Introduce **delays** to dynamic bin packing

Open Questions:

- Remove additive $\log n$ in ϵn migration case
- Beyond worst case model
- Consider networking limits

